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Abstract

I develop a model of production networks in which firms choose inputs under in-
complete information about sectoral productivity and aggregate demand disturbances.
As in the rational expectations framework of Lucas (1972), firms use input prices as
endogenous signals to infer broader economic conditions. Theoretically, I show that the
effect of sectoral productivity shocks on aggregate output depends on the interaction
between the economy’s input-output structure and firm-level uncertainty. Specifically,
shocks to upstream sectors have a larger impact on aggregate output during periods of
high productivity uncertainty, while shocks to downstream sectors have a larger effect
on output during periods of high demand uncertainty. When calibrated to historical
U.S. data, the model generates a state-dependent measure of sectoral importance that
diverges significantly from traditional metrics, particularly in economic downturns. On
aggregate, the interaction between uncertainty and the U.S. economy’s network struc-
ture dampened the impact of productivity shocks on aggregate output by 46% during
Covid (a period of high measured demand uncertainty) relative to the Dot-Com bubble
(a period of high measured productivity uncertainty) or non-crisis periods.
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1 Introduction

Many firms operate in complex supply chains that are vulnerable to a variety of microeco-

nomic disturbances (e.g., bankruptcies, regulatory changes, transportation disruptions, nat-

ural disasters, shifts in household demand, etc.). Recent work argues that these disturbances

can propagate through the economy’s input-output linkages, affect the production decisions

of other firms, and create large macroeconomic fluctuations. In this networked view of the

production process, the macroeconomic impact of microeconomic shocks critically hinges on

how firms’ input choices respond to shocks.

However, firms often have to make input choices without full or current information

about the large number of disturbances that are occurring throughout the economy.1 This

uncertainty at the micro level can distort how firms respond to shocks, affect a firm’s trad-

ing partners, and have important consequences for how shocks aggregate to economy-wide

disturbances. Although incomplete information is arguably an important feature of firm

production, the prevailing assumption in the resurgent literature on production networks

is that firms possess perfect knowledge of the large vector of shocks hitting the economy.

This motivates a central question: How do microeconomic shocks aggregate to economy-wide

disturbances when firms are imperfectly informed about macroeconomic conditions?

In this paper, I address this question by embedding incomplete information in an other-

wise standard general equilibrium model of production networks. In the model, firms buy

inputs while being imperfectly informed about the vector of sectoral productivity distur-

bances and shocks to aggregate household demand. Although firms do not observe these

shocks directly, they can condition their input purchases on locally available information

when transacting with their suppliers: the price of each input. Hence, as in the classic lit-

erature on rational expectations (Lucas, 1972, 1975), firms infer whether a change in input

prices reflects a real disturbance, due to sectoral productivity shocks, or a nominal one, due

to changes in aggregate demand. This price-based inference drives how much firms adjust

their input purchases in response to cost changes and ultimately shapes the impact of sectoral

productivity disturbances on aggregate output.

Theoretically, I characterize how the impact of a sectoral productivity shock on aggregate

output is shaped by the sector’s position in the production network and firms’ uncertainty

about underlying shocks. My main theoretical finding is that sectoral productivity shocks in

upstream sectors (sectors that supply to many other sectors but use few inputs) have large

effects on aggregate output when uncertainty about productivity shocks is high. In contrast,

1A long-standing literature in macroeconomics argues that firms operate under informational frictions.
Moreover, a recent empirical literature provides direct evidence that firms have a limited understanding of
macroeconomic conditions (e.g., Gennaioli et al., 2016; Coibion et al., 2020; or Kumar et al., 2023).
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productivity shocks in downstream sectors have a large impact on aggregate output when

demand uncertainty is high. Intuitively, relative to the complete information benchmark,

firms must forecast the demand of their customers when choosing their input quantities,

which in turn depends on the demand and uncertainty of their customers’ customers, and so

forth. Firms adjust their inputs less in response to input price changes when they perceive

input prices to be driven by nominal disturbances, as they forecast that lower prices are

associated with lower customer demand. The level of firms’ input responsiveness (which

hinges on firms’ uncertainty) has crucial implications for how sectoral productivity shocks

cause aggregate fluctuations and can give rise to measures of sectoral importance that deviate

substantially from complete information economies.

In a quantitative exercise, I calibrate the model to the US input-output network and

historical measures of sectoral productivity and aggregate demand uncertainty. I find that

incomplete information substantially changes the impact of sectoral productivity shocks

on aggregate output relative to the complete information benchmark, particularly during

economic downturns. At an aggregate level, I find that the interaction between uncertainty

and the US input-output structure dampened the impact of aggregate productivity shocks on

output by 50% during Covid (a time of high measured demand uncertainty) relative to the

Dot-Com Bubble (a time of high measured productivity uncertainty) or non-crisis periods.

More generally, by generating state-dependent measures of sectoral importance, the results

provide a framework for designing bailouts or industrial policies that account for the role of

uncertainty in firm decision-making.

Model. To study the macroeconomic implications of incomplete information in production

networks, I embed production networks in a monetary macroeconomic model. Firm-to-firm

linkages follow standard microfoundations, as in Acemoglu et al. (2012). Firms make static

production decisions, but face time-varying volatility regarding two kinds of fundamental

shocks that drive the economy: sectoral productivity shocks and an aggregate demand shock.

At each point in time, past productivity and aggregate demand shocks are common knowl-

edge, but firms choose inputs under uncertainty about the contemporaneous realizations of

these shocks. When firms purchase inputs, they therefore face some level of uncertainty

about their costs and revenues. However, motivated by the classical literature on rational

expectations (Lucas, 1972), I assume that firms can observe information conveyed in local

transactions with their suppliers. Thus, firms can choose inputs based on each input’s price,

but these input choices are not perfectly contingent on a firm’s own demand, productivity, or

the productivity of other sectors. As in the ubiquitous “cost-plus” contracts that often me-

diate transactions (Bajari and Tadelis, 2001), this allows input choices to be cost-contingent,

but not measurable with respect to the entire vector of shocks that hits the economy.
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Incomplete Information at the Firm Level. Under incomplete information, firms

choose inputs to maximize their expected profits, conditional on the price of each input.

First, I characterize firms’ input responsiveness, defined as the elasticity of their input de-

mand with respect to the price of that input. I show that a firm’s input responsiveness

depends on how informative input prices are about its demand. Intuitively, firms reduce

their input purchases when prices increase. However, if higher input prices signal greater

demand, firms are less responsive to price changes in anticipation of higher future sales.

This hedging behavior, driven by incomplete information, alters how firms respond to

changes in their costs. Hence, as in the “island” model of Lucas (1972), firms try to infer

whether price movements result from real disturbances (due to a productivity shock of their

supplier), or nominal disturbances (due to changes in aggregate household demand). For-

mally, I show that input responsiveness increases with a firm’s perceived covariance between

its revenues and input prices, but decreases with the unconditional volatility of its input

prices. Thus, these second moments regarding the joint stochastic process of firms’ revenues

and costs determine how firms respond to input price fluctuations.

Incomplete Information in General Equilibrium. Next, I show that in general equi-

librium, firms’ input responsiveness, the network structure of the economy, and the exogenous

volatilities of sectoral productivity and aggregate demand shocks endogenously determine the

stochastic properties of firms’ revenues and prices. In particular, I show that the solution to

the equilibrium is characterized through a system of functional equations, as one needs to

relate the realization of sectoral prices and revenues to each possible state of the economy. To

solve this system, and thus study how sectoral productivity shocks affect aggregate output,

I employ a two-step approach.

First, I exogenously fix firms’ input responsiveness. I show that the magnitude of how

much firms adjust their input quantities to changes in input prices has large implications for

how sectoral productivity disturbances aggregate over input-output linkages to affect output.

To do this, I derive an index, which I call the economy’s Augmented-by-Uncertainty Domar

Index (AUDI), that relates the aggregate impact of any sectoral productivity disturbance

to the level of firms’ input responsiveness across the production network of the economy.

Concretely, I demonstrate that the AUDI weight of any sector is given by a measure of how

central that sector is in the production network, where its connections to distant sectors

are penalized by an aggregator of input responsiveness. In particular, I show that AUDI is

closely linked to the extensively studied concept of “alpha centrality” in the literature on

social networks (Katz, 1953; Bonacich and Lloyd, 2001), which measures a sector’s centrality

when its higher-order linkages (i.e., the linkages of its customers, its customers’ customers,

and so on) are discounted.
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I show that the magnitude of firms’ input responsiveness has especially large effects

on the aggregate impact of productivity shocks in upstream sectors, whose output travels

through many linkages before reaching final consumption. This is because the aggregate

impact of a productivity shock compounds across input-output linkages according to the

magnitude of firms’ input responsiveness. Thus, as firms become on average more responsive

to changes in their input prices in terms of their input quantities, the aggregate impact of

sectoral productivity shocks from upstream sectors increases. In contrast, as average input

responsiveness declines, downstream sectors (which sell their products directly to households)

become more influential in shaping the dynamics of aggregate output. In the limit in which

firms’ input quantities become entirely unresponsive to changes in input prices, productivity

shocks in non-final good producing sectors do not affect household consumption.

I then study the determinants of optimal input responsiveness in general equilibrium as

a function of the exogenous volatilities of productivity and aggregate demand shocks that

drive the economy. I find that input responsiveness is increasing in the relative volatility of

productivity shocks to aggregate demand shocks. Hence, upstream sectors become important

sources of macroeconomic risk in times of relatively high productivity uncertainty, while

downstream sectors become more influential in times of relatively high aggregate demand

uncertainty. Intuitively, when the volatility of aggregate demand increases, firms perceive all

input price changes to be nominal. Thus, they forecast greater nominal revenues in response

to greater nominal input prices and reduce their input responsiveness. Hence, firms’ latent

uncertainty about underlying economic shocks is a central determinant of how microeconomic

shocks aggregate to economy-wide fluctuations.

A key implication of my results is that the economic analyst needs to account for the

entire structure of the economic network and its interaction with uncertainty to understand

the aggregate consequences of microeconomic shocks. This distinguishes my theory from

frictionless economies, where the impact of a sectoral shock on output is directly inferred

from that sector’s Domar weight, defined as its revenue-share of nominal GDP. Moreover,

incomplete information qualitatively alters productivity shocks’ aggregate effect, not just in

magnitude but also in sign. For example, if firms are negatively responsive to input price

changes (so that input quantities fall when prices fall), then temporary sectoral productivity

shocks can have a negative effect on aggregate output. Thus, even under fixed production

network structures, measures of sectoral importance are not immutable objects, but depend

on the underlying nature of uncertainty in the economy.

Quantitative Analysis. In the final part of the paper, I quantify the economic relevance of

my results by calibrating my model to the US input-output network structure and historical

measures of sectoral productivity and aggregate demand uncertainty. To do this, I estimate
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a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model on the time

series for sectoral productivity and aggregate demand disturbances in the US economy. This

approach provides a parsimonious way to proxy for the time-variation in the different sources

of uncertainty faced by US firms. I then use my model-implied estimates relating uncertainty

to optimal input responsiveness to construct time-varying AUDI weights for each sector in

the US economy.

This exercise reveals substantial state-dependence in how microeconomic disturbances

aggregate over the US input-output network. The AUDI weights of sectors increased dur-

ing the Dot-Com Bubble (a time of relatively high measured productivity uncertainty), but

decreased during Covid (a time of relatively high measured aggregate demand uncertainty).

Consequently, according to the model, shocks to many downstream sectors (e.g., food or

hospital services) became more influential in shaping the dynamics of output and prices dur-

ing Covid. In contrast, productivity shocks in upstream sectors with many interconnections

(e.g., credit intermediation or administrative and support services) became relatively less

important during this period.

In general, I find that incomplete information predicts substantially different measures of

sectoral importance than what is implied by the benchmark assumption of complete infor-

mation. In particular, Domar weights are particularly poor at approximating the aggregate

impact of sectoral productivity shocks exactly when these shocks are most volatile, which

coincides with US economic downturns. For example, a 1% productivity shock in the credit

intermediation sector — which is a large sector and would increase real GDP by 0.16% under

complete information — results in a real GDP contraction during Covid. Thus, the results

caution against using Domar weights as a sufficient statistic when designing industrial policy

or bailouts in order to promote aggregate output in times of crises.

Finally, I consider how the interaction between the network structure of the economy and

time-varying uncertainty affects the impact of aggregate productivity shocks on output. I find

that the impact of aggregate productivity shocks on output was 50% lower in the aftermath

of Covid relative to non-crisis periods, as this was a period characterized by especially high

demand uncertainty. This result is driven by shifts in firms’ input responsiveness due to

the changing nature of uncertainty regarding supply and demand shocks. Moreover, I find

that this state-dependence is important to account for the overall volatility of real GDP

growth in my sample period. For example, counterfactually assuming that firms operate

under complete information would overshoot the volatility of GDP growth by 54% relative

to the data. Overall, the results underscore the importance of considering the interaction

between uncertainty and input-output linkages in understanding aggregate fluctuations.
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Literature. This paper contributes to the growing literature on production networks.2 A

number of papers show how production networks affect macroeconomic fluctuations in the

presence of distortions (e.g., Liu, 2019; Baqaee and Farhi, 2020; Bigio and La’o, 2020); large

shocks (e.g., Baqaee and Farhi, 2019; Dew-Becker, 2023); dynamics (e.g., Atalay, 2017; Liu

and Tsyvinski, 2024); nominal rigidities (e.g., Pasten et al., 2017; Ghassibe, 2021; La’O and

Tahbaz-Salehi, 2022; Rubbo, 2023); or entry/exit and link formation (e.g., Baqaee, 2018;

Acemoglu and Azar, 2020; Taschereau-Dumouchel, 2020; Elliott et al., 2022). These papers

assume firms choose inputs under complete information about shocks. In contrast, I develop

a model in which firms choose intermediate inputs under incomplete information. The ag-

gregate impact of sectoral productivity shocks in this setting is shaped by the interaction of

macroeconomic uncertainty with the economy’s production network structure.3

More closely related are the works of Bui et al. (2022) and Chahrour et al. (2021),

who study how noise shocks and variations in news coverage, respectively, affect aggregate

fluctuations in the presence of input-output linkages. These works assume that firms choose

labor under informational frictions, while intermediate inputs are chosen under complete

information. My results emphasize that incomplete information in intermediate input choice

qualitatively changes the aggregate impact of sectoral shocks. Tian (2021) studies how news

shocks affect aggregate fluctuations in a time-to-build model à la Long and Plosser (1983).

In contrast, I study how contemporaneous shocks affect aggregate output in the presence of

informational frictions.

Closest to my analysis is the recent work of Pellet and Tahbaz-Salehi (2023), who embed

quantity rigidities in a model of input-output works. This work assumes that firms make

intermediate input commitments based on the observation of exogenous public signals. The

key departure from this model is that I allow firms to condition their input choices on input

prices, and thus on the local terms of trade with their suppliers. By doing so, my model is

robust to the “re-contracting critique” of Grossman (1989), in which firms would re-contract

with their suppliers upon observation of input prices. This modeling departure is important,

as the key object that determines the aggregate impact of sectoral shocks in my analysis is

how firm’s respond to local information conveyed in input prices.

For this reason, my work also borrows from the classical literature on rational expecta-

tions, as it features the shared methodological premise that agents act on what they learn

from endogenous market outcomes (e.g., Lucas, 1972, 1975; Grossman and Stiglitz, 1980).

By allowing firms to learn from the interactions with their suppliers in input markets, the

2See Carvalho (2014) and Carvalho and Tahbaz-Salehi (2019) for reviews.
3Work by Kopytov et al. (2022) studies how uncertainty shapes the structure of the input-output network

through technology choice. In contrast, I study how uncertainty shapes firms’ input choices taking their
production technology and the network structure as given.
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inference problem that links firms’ uncertainty to their input choice arises without refer-

ence to the physically separated “islands” of Lucas (1972). Related work by Atolia and

Chahrour (2020) studies how firms operating in production networks use market-consistent

information to make optimal investment decisions in a real business cycle economy.4 In con-

trast, this paper emphasizes how local market information shapes firms’ intermediate input

choices. Works by Angeletos and La’O (2010), Angeletos et al. (2016), Gaballo (2018), and

Angeletos and La’O (2020) show that key input choices based on incomplete, local informa-

tion have important implications for the response of macroeconomic outcomes to aggregate

shocks. This paper emphasizes that these choices can also have large implications for the

propagation of disaggregated shocks in networked settings.

Finally, this paper relates to a growing literature in microeconomic theory on network

games with incomplete information (e.g., Calvó-Armengol et al., 2015; De Mart́ı and Zenou,

2015; Bergemann et al., 2017; Golub and Morris, 2020; Lian, 2021). As in these papers, I

show that network structure is a key object that influences aggregate outcomes. While the

bulk of these works study equilibria in the presence of exogenous information structures, this

paper provides a theoretical framework to study equilibria in networked environments when

information arises endogenously through agents’ interactions in markets.

Outline. The rest of the paper is organized as follows. Section 2 presents the model.

Section 3 presents the theoretical results. Section 4 presents the quantitative findings when

the model is calibrated to the US economy. Section 5 concludes.

2 Incomplete Information in Production Networks

In this section, I embed production networks in a general equilibrium monetary macroe-

conomic model. The model follows standard microfoundations for modeling input-output

linkages (e.g., Jones, 2011; Acemoglu et al., 2012), and only deviates from the literature

in assuming that inputs are chosen under incomplete information about shock realizations.

Time is discrete and infinite and indexed by t ∈ N. The economy consists of a representative

household and N ∈ N+ sectors with input-output linkages, indexed by n ∈ N = {1, . . . , N}.
In each sector n ∈ N , a competitive representative firm produces a good that can be either

consumed or used as an input by other sectors.

4Hellwig and Venkateswaran (2009, 2014), and Flynn et al. (2023) study how firms use market information
to set prices under monopolistic competition, but abstract from network interactions.
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2.1 Households

The representative household has standard (Golosov and Lucas, 2007) expected discounted

utility preferences with a discount factor β ∈ (0, 1) and per-period utility defined over a

consumption aggregate Ct, real money balances Mt/Pt, and total labor supplied Lt:

E0

[
∞∑

t=0

βt

(
ln Ct + ln

Mt

Pt

− Lt

)]
(1)

The consumption aggregator Ct is defined by:

Ct =
∏

n∈N

Cγn
nt (2)

where Cnt is total consumption of sector n and the consumption shares γn ≥ 0 are positive

constants that sum to one:
∑

n∈N γn = 1. When this creates no confusion, I use the terms

real GDP and aggregate consumption interchangeably. To ease notation, I also define the

|N |-sized vectors of consumption shares γ = [γn].

Households can save in either money or risk-free one-period bonds Bt (in zero net supply)

that pay an interest rate of (1 + it). The household owns the firms in the economy, which

earn total profits Πt.
5 Thus, the household faces the following budget constraint:

Mt +Bt + PtCt = Mt−1 + (1 + it−1)Bt−1 + wtLt +Πt (3)

where Pt is the dual price index to Ct and wt is the nominal wage. The aggregate money

supply follows an exogenous random walk with drift µM and time-dependent volatility σM
t :

logMt = logMt−1 + µM + δσM
t εMt (4)

where the money innovation is an IID random variable that follows εMt ∼ N(0, 1). The con-

stant δ > 0 is a strictly positive scalar that parameterizes the total amount of uncertainty in

the economy, which will be useful in obtaining some linearized results later on. Furthermore,

so that interest rates remain strictly positive, I assume that 1
2
(δσM

t )2 ≤ µM for all t ∈ N. I

interpret an increase in the money supply as an aggregate demand shock. The major benefit

of this specification of household utility is that we can study these demand shocks tractably.

5Firms earn zero profits in expectation, but can have non-zero profits with positive probability (even
though they are competitive) due to incomplete information, the structure of which will be explained shortly.
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Finally, I assume that wages are determined according to the following equation:

wt = (wt−1)
χ(w∗

t )
1−χ (5)

where χ ∈ [0, 1) parameterizes aggregate wage rigidities and w∗
t denotes the frictionless

nominal wage rate, i.e. the wage rate that would prevail when χ = 0 (to be determined in

equilibrium). Households therefore supply sufficient labor to meet firms’ labor demand. This

specification of the real wage rate allows the model to parsimoniously capture the cyclicality

of nominal wages, which is important determining the effect of an aggregate demand shock

on real GDP. Note also that the environment with frictionless wages is nested under χ = 0.

2.2 Intermediate Good Producers

Sector n ∈ N produces using labor and goods from other sector. Each sector produces

output Qnt using Cobb-Douglas technologies with constant returns to scale:

Qnt = cnznt (Lnt)
αnl
∏

n′∈N

X
αnn′
nn′t (6)

where cn is a normalizing constant,6 Lnt denotes the amount of labor purchased by firms in

sector n at time t, and Xnn′t denotes the amount of inputs purchased by sector n from sector

n′ at time t. I assume that the Cobb-Douglas coefficients satisfy αnl > 0 and αnn′ ≥ 0.

The scalar znt is a sector-specific technology shifter that follows an AR(1) process with

time-varying volatility δσz
nt given by:

log znt = ρzn log znt−1 + δσz
ntε

z
nt (7)

where εnt ∼ N(0, 1) and ρAn is a sector-specific autocorrelation coefficient for the productivity

process. I allow the εAnt to be potentially correlated across sectors. Profits in sector n ∈ N
are therefore given by:

Πnt = PntQnt − wtLnt −
∑

n′∈N

Pn′tXnn′t (8)

where Pnt denotes the equilibrium price good n at time t. For ease of notation, I let Pt = [Pnt]

denote the vector of sectoral prices. I also define the economy’s input-output matrix as

A = [αnn′ ], which captures the interconnections between different sectors.

6cn is defined as: cn =
(
α−αnl

nl

∏
n′∈N α

−αnn′
nn′

)
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2.3 Production under Informational Frictions

At the beginning of time t, firms observe past shocks ({znt−1}n∈N and Mt−1) and choose

how much of each input to purchase. However, they face incomplete information about the

contemporaneous realizations of these supply and demand disturbances. Consequently, firms

face some level of uncertainty about their profits when making their input choices. Firms

therefore choose inputs Xnn′t to maximize their expected real, risk-adjusted profits:

Xnn′t(Inn′t) = argmax
Xnn′t

E

[
1

PtCt
Πnt

∣∣∣∣∣Inn′t

]
for all n, n′ ∈ N (9)

where Inn′t is a buyer-input specific information set (to be described shortly), and (PtCt)−1

is the households’ stochastic discount factor.

This formulation emphasizes that firms can only condition their input choices on the

relevant information set. For example, under complete information, Inn′t contains the set

{{znt}n∈N ,Mt}, so that firms can condition their input choices on the full vector of supply

and demand disturbances in the economy. In practice, however, firms often have a limited

ability to make input choices that are contingent on this rich set of variables, either due to

inattention (Mankiw and Reis, 2002), organizational constraints (Simon, 2013), or contract-

ing frictions (Taylor, 1980). This more general formulation formalizes the notion that firms

might only be able to condition their input choices on a restricted set of variables.

Motivated by the classical literature on rational expectations, I assume that a key variable

that enters firms’ buyer-input specific information set is the price of the input that they

purchase. As in the “island model” of Lucas (1972), this captures the fact that firms can

learn from local transactions with their suppliers. Hence, in addition to past aggregate

demand and productivity shocks (which are common knowledge), firms can condition their

demand for each input on its price. Formally, I maintain the following assumption.

Assumption 1 (Locality). Inn′t = {Pn′t, {znt−1}n∈N ,Mt−1} for all n, n′ ∈ N

The interpretation of this assumption is as follows: firms can make price-contingent

input plans based on that input’s price, but cannot condition their choice perfectly based on

the realization of their own demand, productivity, or the productivity of other sectors (or

other input prices). Intuitively, input choices depend on the terms of trade between a buyer

and their supplier, but not on the terms of trade of transactions happening elsewhere in the

economy. Nevertheless, as input prices will fluctuate in response to shocks, some information

on the current state of the economy is transmitted to agents through these input prices.

Although this assumption is theoretically motivated, I later show that the measurability
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Figure 1: A Simple Supply Chain Economy

L 1 2 C

Note: Firms in Sector 1 purchase labor and sell to firms in Sector 2. Firms in Sector 2 buy inputs
from Sector 1 under incomplete information about their productivity and household demand.

restriction that this informational structure implements is an empirically relevant feature of

many firm-to-firm transactions.7

Finally, in order to preserve market clearing, I assume that firms’ labor inputs can ad-

just to realized demand conditions. Hence, labor is to be interpreted as labor utilization,

hours worked, or any other input that can adjust to realized demand. However, the exact

interpretation of this input is not important. Instead, what is important is that there exists

a single input that can adjust to realized demand to ensure that markets clear. The firm

therefore adjusts labor frictionlessly to maximize its profits, taking the price of its inputs,

its previous input purchases, and demand as given:

max
Lnt

Πnt (10)

A Simple Supply Chain Example. In order to further understand what Assumption 1

represents, the following example may be useful. Consider a simple supply chain economy,

depicted in Figure 1. Sector 1 hires labor to create an input (machine parts, raw materials,

energy, information services, etc.). This input is then sold to Sector 2, which creates a final

output for household consumption (finished products or services, data analysis, reports, etc.).

When Sector 2 purchases from Sector 1, it does so under some uncertainty regarding what

final household demand for its product will be. After Sector 2 faces the prices charged by

its supplier and purchases inputs on its optimal demand schedule (Equation 9), it sells the

final product to households, and realizes it profits.

A Contracting Interpretation. The key friction in this model is that firms cannot

change the quantity of their input purchases, after having observed the realization of their

demand or productivity. In this sense, it is equivalent to think of the informational friction

in this model as an outcome generated by incomplete contracting. Suppose, for example,

that all transactions in the economy were mediated through complete contingent contracts

which specified the quantity produced for every possible shock realization znt and Mt. The

allocations that would emerge in such a setting would be equivalent to those of a complete

7Motivated by psychological foundations, Lian (2021) also argues that decision makers tend to condition
decisions on information that is directly observable to each decision separately (so-called “narrow thinking”).
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information economy, as in a standard Arrow-Debreu competitive equilibrium. In contrast,

in this model, the terms of trade of the contract only depend on the price charged by the

supplier — formally, the demand function given by Equation 9 is measurable only with re-

spect to the per-unit price of the input, but not with respect to every shock in the economy

or the terms of trade of other transactions in the economy.

Of course, complete contingent contracts that implement the full information allocation

are not observed in practice due to their complexity and challenges of enforcement (Battigalli

and Maggi, 2002). In the example of Figure 1, why would firms in Sector 1 conclude a

contract for delivery that is contingent on final household demand for Sector 2’s product, an

outcome that only Sector 2 can observe? In this contracting interpretation, posted prices are

observable by both seller and customer, and thus allocations depend on the price charged.8

In Appendix B.1, I show that the allocations generated by the model are equivalent to those

generated by simple contracts of a cost-contingent nature which are negotiated bilaterally by

suppliers and their customers ex-ante. These “cost-plus” contracts are commonly observed

in practice (Hiller and Tollison, 1978; Crocker and Reynolds, 1993; Banerjee and Duflo, 2000;

Bajari and Tadelis, 2001) and implement the same measurability constraints as the demand

function of Equation 9.

Learning From Additional Prices. Under Assumption 1, firms condition their input

demand on each input’s price, but not on other input prices. This is reasonable given that

inputs are often negotiated bilaterally between buyer and seller (as argued in the contracting

interpretation above), or given that firm managers may only be able to observe local terms of

trade when purchasing particular inputs. Nevertheless, I later show that the key qualitative

predictions of the theory are preserved when one allows for learning from additional prices.

2.4 Rational Expectations Equilibrium

The equilibrium concept is that of a standard rational expectations equilibrium. Firms

implement input plans according to the demand function given by Equation 9; total labor

demanded for each industry satisfies Equation 10; households make their consumption and

savings decisions; and markets clear. Formally, I define an equilibrium as follows.

Definition 1 (REE). An equilibrium is a collection of variables

{{{Xnn′t}n′∈N}, Pnt, Cnt, Lnt, Qnt, znt}n∈N , Ct,Pt, Lt, wt,Mt, Bt}t∈N, such that :

8This notion is further explored in work by Radner (1982), who studies equilibrium under uncertainty.
He writes: “In practice, since traders make contracts with other traders, and not with an abstract “market”,
delivery will be contingent upon information that is common to the two traders in question [. . . ]”
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1. (Input Optimality) Firms choose input plans to maximize their expected profits given

their available information according to Equation 9.

2. (Labor Optimality) Firms choose labor to maximize their profits according to Equation

10, taking the price of inputs, their productivity, and their own demand as given.

3. (Household Optimality) The household maximizes their expected discounted utility 1

subject to their budget constraint 3, taking prices and the nominal rate as given.

4. (Rational Expectations) Expectations are consistent variables’ laws of motion.

5. (Market Clearing) The markets for goods and labor clear:

Qnt = Cnt +
∑

n′∈N

Xn′nt, Lt =
∑

n′∈N

Ln′t (11)

and the markets for money balances and bonds clear.

3 Theory: Sectoral Disturbances and Fluctuations

In this section, I describe how sectoral productivity and aggregate nominal demand distur-

bances shape aggregate fluctuations under incomplete information. I proceed in three steps.

First, I show that the joint stochastic process of firms’ revenues and prices determines input

responsiveness, or the elasticity of input purchases to their price. Second, I derive an index

of sectoral importance that links a sector’s position in the input-output network to the level

of input responsiveness in the economy. I show that this index is closely linked to the concept

of a network’s “alpha centrality”, which measures the centrality of a sector when connections

to distant sectors are penalized by an aggregator of firms’ input responsiveness. Third, I de-

scribe how this index depends on firms’ relative uncertainties about sectoral productivity to

aggregate demand disturbances. Overall, incomplete information implies that the impact of

productivity and aggregate demand shocks on real GDP is state-dependent and determined

by the interaction of uncertainty with production network structure.

3.1 The Complete Information Benchmark

Before analyzing how incomplete information affects macroeconomic fluctuations, it is useful

to analyze equilibrium allocations under the prevalent benchmark in the literature where

firms make production decisions under complete information about shocks. In the complete

information economy, firms face no uncertainty. Hence, they choose inputs so that costs are

13



a constant fraction of realized revenues Rnt:

Xnn′t = αnn′
Rnt

Pn′t
and Lnt = αnl

Rnt

wt

(12)

where Rnt = Pnt×Qnt. These demand functions are in terms of endogenous variables. How-

ever, we may use the following Lemma to express household wages and nominal expenditures

in terms of exogenous variables at time t, (which holds under any information structure).

Lemma 1. Nominal expenditures and flexible wages satisfy

PtCt = ιtMt and w∗
t = ιtMt (13)

where ιt :=
it

1+it
> 0 follows a deterministic sequence.

Proof. See Appendix A.1

Thus, nominal wages and expenditures are simply proportional to the total stock of

money balances in the economy. The household’s problem therefore collapses to a static one

given knowledge of the demand shocks Mt. Intuitively, the presence of money in the utility

function gives rise to an additional intertemporal trade-off between savings and consumption,

thereby allowing us to express nominal expenditures in terms of the total money supply. I

now present a first result that links aggregate output to shocks under complete information.

Proposition 1. In the complete information economy, real GDP is given by:

log Ct = cons+ χ logMt +
∑

n∈N

λnt log znt (14)

where the constant is independent of time t shocks and λt = [λnt] is the vector of Domar

weights, defined as:

λt =
Rt

PtCt
=
[
γ′(I−A)−1

]′
(15)

Proof. See Appendix A.2.

Proposition 1 describes how real GDP depends on aggregate demand and sectoral pro-

ductivity shocks under complete information. This reveals two observations. First, the

effect of an aggregate demand shock on output is independent of the network structure of

the economy and is given by the overall level of nominal wage rigidities. In particular, when

χ = 0, we recover monetary neutrality. Second, the effect of a sectoral productivity shock

on output is given by that sector’s Domar weight, defined as the sector’s revenue share to
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nominal GDP. In equilibrium, this revenue share is the product of household expenditure

shares γ with the economy’s inverse Leontief matrix L, defined as:

L−1 = (I−A)−1 =
∞∑

k=0

Ak (16)

Domar weights thus combine household preferences (through γ) with the economy’s input-

output structure to give rise to a measure of sectoral importance for the complete information

economy. Intuitively, an increase in sectoral productivity reduces the corresponding sector’s

price. That sector’s customers respond by purchasing more inputs, and this reduces their

price, as well as their customers’ price, and so on. These higher-order linkages are captured

through the power sum of the input-output matrix A. The total effect of a productivity

shock on output thus amounts to aggregating a sector’s direct and indirect linkages to all

other sectors, and weighting these by household expenditure shares.

Proposition 1 emphasizes that, under complete information, knowing the revenue shares

of each sector are sufficient to characterize the dynamics of output. In other words, two

identical economies that feature the same Domar weights will also feature identical dynamics

for real GDP. More generally, Domar weights are the relevant metric for the aggregate impact

of sectoral shocks in a broad class of frictionless economies, as studied in Baqaee and Farhi

(2019).9 Second, by construction, the stochastic properties of either revenues or prices do

not affect firms’ decisions and thus the impact of these shocks on output. In the next section,

I show that these observations are no longer true when firms face incomplete information

about shocks and must choose inputs under uncertainty.

3.2 Production under Incomplete Information

I now describe firms’ optimal input choices under incomplete information.

Proposition 2. Firms’ optimal choice of inputs and labor satisfies:

Xnn′t = αnn′
Et [(Mt)

−1Rnt|Pn′t]

Et [(Mt)−1Pn′t|Pn′t]
and Lnt = αnl

Rnt

wt

(17)

Proof. See Appendix A.3.

Thus, relative to complete information, firms choose inputs to maximize their real, risk-

9Even in economies that feature distortions due to wedges, as in Baqaee and Farhi (2020), Domar weights
are the relevant metric of sectoral importance if the production function is Cobb-Douglas. Under incomplete
information, the aggregate impact of sectoral shocks is different than sectoral Domar weights even in the
presence of Cobb-Douglas technology.
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adjusted profits, conditional on the price of that input (as ιtMt is the households’ nominal

stochastic discount factor). Recall that under complete information, inputs purchased from

other firms depend on both input costs and realized revenues. In the incomplete information

economy, the quantity of a firm’s input purchases depend on a firm’s expectation about its

revenues. If a firm forecasts higher revenues, it increases its input purchases, all else constant.

Moreover, a firm’s beliefs about its potential revenues might depend on its input costs, to

the extent that revenues and input prices covary.

Input prices therefore play a dual role in formulating firms’ optimal demand schedule

under incomplete information. First, an increase in input prices directly increases a firms’

costs and reduces the optimal input quantity purchased. Second, an increase in input prices

might signal to firm that its demand (and thus its revenues) will change. Both of these forces

determine how responsive firms’ input purchases are to input price changes. As I will show

shortly, this change in firm-level responsiveness due to incomplete information shapes how

productivity and demand disturbances affect aggregate output.

Prices and Revenues in General Equilibrium. Proposition 2 demonstrated that firms’

optimal input choices depend on the joint stochastic properties of their revenues and prices.

I now characterize how these endogenous objects are determined in general equilibrium.

Proposition 3. Equilibrium prices {Pnt}n∈N and revenues {Rnt}n∈N satisfy the following

system of equations:

Rnt = c̃ntzntPnt

(
Rnt

M1−χ
t

)αnl ∏

n′∈N




Et

[
M−1

t Rnt

∣∣∣Pn′t

]

Et

[
M−1

t Pn′t

∣∣∣Pn′t

]




αnn′

(18)

Rnt = γnιtMt +
∑

n′∈N

αn′nPnt

Et

[
M−1

t Rn′t

∣∣∣Pnt

]

Et

[
M−1

t Pnt

∣∣∣Pnt

] (19)

for all n ∈ N , where c̃nt :=
(
ι1−χ
t wχ

t−1

)αnl
is independent of time t shocks.

Proof. See Appendix A.4

Proposition 3 derives a system of functional equations that relates realized prices and

revenues to exogenous shocks, firms’ expectations, and the input-output structure of the

economy. To understand this Proposition, note that Equation 18 is derived by substituting

firms’ optimal input choices into their production function. Hence, this equation states

that a firm’s revenues must be equal to its output, multiplied by its price. Equation 19 is

derived by substituting firms’ input choices into market clearing — a firm’s revenues must

be consistent with its sales to households and sales to other downstream firms.
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These equations are illustrative in understanding how a sectoral productivity shock can

aggregate to create economy-wide fluctuations. Consider a productivity shock in sector

n ∈ N . This directly increases the output of that sector through Equation 18. The new

equilibrium price must be consistent with market clearing (Equation 19), which depends

partly on how that sector’s customers respond to changes in input prices in terms of their

input purchases. Of course, the resulting equilibrium price shapes sector n’s revenues and

thus how firms in that sector optimally choose inputs to begin with.

This interdependence reveals feedback loops. Concretely, fluctuations in prices and rev-

enues depend on firms’ optimal input choices. However, these input choices primitively

depend on firms’ expectations about the co-movement between revenues and prices. As

in Lucas (1972) or Grossman and Stiglitz (1980), optimal choices partly depend on the

stochastic properties of endogenous objects. Thus, relative to complete information, the key

challenge in this economy is to solve for how firms’ expectations depend on the network

structure of the economy and the exogenous volatilities of underlying disturbances.

3.3 Example: A Simple Supply Chain Economy

In order to illustrate how firms’ production decisions under incomplete information affects

output, consider the simple supply chain economy of Figure 1. In this example, Sector 1 is an

upstream sector that purchases labor and sells an intermediate product to Sector 2. Firms

in Sector 2 then sell a final product to households. Thus, this economy can be described

through two simple equations. First, from Equation 18, we can write Sector 1’s price as:

logP1t = − log c̃1t − log z1t + (1− χ) logMt (20)

As Sector 1’s only input is labor (and this adjusts frictionlessly to demand by assumption),

the price of Sector 1 is simply equal to the marginal cost of production. Second, as Sector

2 sells directly to households, real GDP in this economy is simply equal to Sector 2’s input

purchases. Using Sector 2’s optimal input demand, we obtain:

log Ct︸ ︷︷ ︸
real GDP

= logEt[M
−1
t (ιtMt)|P1t]− logEt[M

−1
t P1t|P1t]︸ ︷︷ ︸

input purchases conditional on price

(21)

where we have used the fact that Sector 2’s revenues are simply equal to total household

expenditures (R2t = ιtMt). Hence, the effect of shocks on consumption depends on how

firms in Sector 2 respond to input price movements. In particular, this effect depends on

how well firms are able to forecast changes in their sales through changes in their costs.
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Figure 2: How Uncertainty Shapes the Dynamics of GDP, Revenues, and Prices

(a) Effect of Shocks on GDP (b) Covariance of Revenues and Input Price

Note: Left panel: the effect of a sectoral productivity shock and an aggregate demand shock on
real GDP at time t as a function of relative uncertainty about productivity and demand: d logGDPt

d log x ,
for x ∈ {zt,Mt}. Right panel: the covariance between Sector 2’s revenues and input price as a
function of relative uncertainty, keeping total uncertainty constant, (σz

t )
2 + (σM

t )2 = 1. See Figure
1 for a graphical depiction of the supply chain economy. Parameterization: χ = 0.5.

The following proposition derives firms’ optimal input demand function by solving for the

conditional expectation in Equation 21.

Proposition 4 (Macroeconomic Outcomes in the Simple Supply Chain). Real GDP in the

simple supply chain economy is given by:

log Ct = cons+

(
σz
1t/σ

M
t

)2 − χ(1− χ)

(σz
1t/σ

M
t )

2
+ (1− χ)2

(log z1t − χ logMt) (22)

where the constant is independent of time t shocks.

Proof. See Appendix A.5.

Proposition 4 shows that the impact of Sector 1’s productivity shock or an aggregate

demand shock on output depends on firms’ relative uncertainty about these shocks (σz
1t/σ

M
t ).

Figure 2a illustrates this result graphically. When productivity uncertainty rises, the impact

of productivity shocks on output also increases. In contrast, as aggregate demand uncertainty

rises, the impact of a demand shock on output decreases.

These effects are tightly linked to the equilibrium stochastic properties of firms’ revenues

and input costs. Figure 2b plots the equilibrium covariance between Sector 2’s revenues
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and its input price as a function of relative uncertainty. As relative uncertainty about

aggregate demand increases, firms in Sector 2 perceive all fluctuations in their input price

to be generated by demand disturbances. Hence, these firms forecast that their revenues

will increase when they observe higher input prices. As a consequence, firms hedge against

higher input costs by responding less in terms of their input purchases. Productivity shocks

in Sector 1 therefore have a smaller effect on aggregate consumption when aggregate demand

uncertainty increases.

Conversely, as productivity uncertainty increases, input prices become less correlated

with household expenditures. Firms in Sector 2 therefore become more responsive to input

price changes in terms of their input purchases. These firms respond to the inflationary

pressures of aggregate demand shocks by reducing their inputs more aggressively, and this

attenuates (and can even flip the sign of) the impact of aggregate demand shocks on output.

Takeaways from this Simple Example. This exercise emphasizes three key findings.

First, the aggregate impact of sectoral productivity shocks is qualitatively different from

the complete information benchmark in which the effect of sectoral shocks on GDP is equal

to the corresponding sector’s Domar weight. Indeed, in this example, both sectors have a

(complete information) Domar weight of unity as their revenues are simply equal to final

household expenditures. Yet, the impact of a productivity shock in Sector 1 can substantially

differ from unity, and can even flip sign, depending on uncertainty.10

Second, the effect of productivity and aggregate demand shocks on output is shaped by

firms’ relative uncertainties about these disturbances. In the same spirit as Lucas (1972),

firms attempt to “disentangle” real movements (due to productivity shocks) from nominal

movements (due to aggregate demand shocks) in their input prices when making production

decisions. This uncertainty dictates how responsive input choices are to prices. Moreover, as

these effects are independent of total uncertainty, even small levels of uncertainty (in which

case δ → 0) can have a large effect on the aggregate impact of shocks.

Third, the effect of sectoral disturbances on aggregate output depends on the interaction

between the production network structure of the economy and uncertainty. Indeed, it is

straightforward to see that a sectoral productivity disturbance in Sector 2 would pass-through

to output one-to-one, independent of underlying uncertainty. The macroeconomic impact

of a sectoral productivity disturbance thus crucially depends on that sector’s position in

the economy’s input-output network. In more general networks, firms must make inferences

about the demand of their downstream customers, which depends on the demand (and

10The notion that temporary TFP shocks can be contractionary is not merely a theoretical curiosity, but
has empirical relevance. For example, Basu et al. (2006) find that that technology shocks lower input use
and output on impact using an “augmented-growth-accounting” approach, while Angeletos and La’O (2010)
document this phenomenon in an RBC model with dispersed information.
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thus the uncertainty) of their downstream customers, and so on. This gives rise to a rich

interaction between network structure and uncertainty. Hence, I next turn to analyzing how

uncertainty shapes sectoral importance in general input-output structures.

3.4 Sectoral Importance under Incomplete Information

In order to characterize how sectoral productivity shocks affect aggregate output, I employ

a two-step approach that allows me to decouple the feedback between uncertainty and input

responsiveness embodied in Proposition 3. First, I solve for the dynamics of real GDP by

fixing firms’ demand schedules for inputs. I then solve for firms’ optimal demand schedules

via the model-implied equilibrium laws of motion for prices and revenues. To keep the

analysis tractable, I linearize the market clearing equation 19 around “small shocks” by

taking δ → 0 (where recall that δ parameterizes overall shock volatility). Note that there is

no need to linearize Equation 18, as firms’ production functions are already log-linear. Hence,

the analysis preserves firms’ global best response functions for their production choices.

Output Dynamics under Fixed Responsiveness. I begin by defining two matrices

that are central to the analysis:

Ωt := [ωnn′t] =

[
−d logXnn′t

d logPn′t

]
and S := [snn′ ] =

[
αn′n

λn′

λn

]
(23)

The matrix Ωt is the economy’s responsiveness matrix, which contains the (negative) elastic-

ity of firms’ input demand to its own input. The matrix S is the sales matrix. The elements

snn′ denote the share of revenues in sector n from selling to n′ in the complete information

economy. I define the remainder of its row sums snc = 1 −
∑

n snn′ as the sales share to

households (i.e. the fraction of sales going to final consumption). I now state the first Theo-

rem of this section. I use the short-hand notation diag(xn) to denote a diagonal matrix with

elements xn.

Theorem 1. Real GDP under fixed responsiveness is given by:

log Ct = cons+ ϵ(Ωt)
′ log zt +

[
1− ϵ(Ωt)

′ × diag
(
(1− χ)αnl + (1− αnl)snc

)]
logMt (24)

where the constant is independent of time t shocks and ϵ(Ωt), the economy’s Augmented-by-

Uncertainty Domar Index (AUDI) is given by:

ϵ(Ωt) = γ′
[

I−A⊙Ωt︸ ︷︷ ︸
responsiveness-adjusted

Leontief matrix

− diag

(
(1− αnl)×

∑

n∈N

snn′(1− ωn′nt)

)

︸ ︷︷ ︸
demand impact matrix

]−1

(25)
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whenever the matrix in brackets is invertible.11

Proof. See Appendix A.6.

Theorem 1 describes how real GDP responds to sectoral and aggregate demand shocks

under a given level of input responsiveness. In order to understand this result, consider first

how prices respond to a productivity shock. First, a sectoral productivity shock directly

increases its sector’s output. In equilibrium, that sector’s output price must change to

equate supply and demand. The magnitude of this change is given by how responsive that

sector’s customers are to input prices in terms of their purchases, as well as how effectively

firms in that sector can respond to demand conditions. This force is captured by the diagonal

“demand impact matrix” in ϵ(Ωt), which contains the input responsiveness of each sector’s

customers weighted by their sales share (
∑

snn′(1−ωn′nt)), as well as one minus the sector’s

labor share in production (1− αnl).

This change in equilibrium prices has spillovers to other sectors’ output through input-

output linkages. The magnitude of these spillovers is mediated by the Hadamard product

of input-output linkages A with the responsiveness matrix Ωt. This increase in output then

yields an additional round of spillovers. Assuming A ⊙ Ωt has a principal eigenvalue less

than unity in absolute value, we can write this channel as:

[I−A⊙Ωt]
−1 = I+A⊙Ωt + (A⊙Ωt)

2 + . . .

Thus, the matrix I−A⊙Ωt is the standard Leontief matrix, adjusted for input responsiveness.

Multiplying these output changes by household expenditure shares (γ) then yields the final

effect of a sectoral disturbance on real GDP.

Finally, a similar propagation mechanism underscores how aggregate demand shocks

affect real GDP. Absent any changes in prices, an increase in money balances increases

household consumption one-to-one. However, this shock will also have some inflationary

effects on prices. First, aggregate demand directly increases firms’ prices because it increases

wages (the term (1−χ)αnl) and firms’ revenues through their sales to households (as captured

by the term (1−αnl)snc). Firms respond to this price increase by reducing inputs according

to ϵ(Ωt), as in the previous discussion regarding a productivity shock. The total change in

final household consumption is thus given by 1− ϵ(Ωt)
′ × diag((1− χ)αnl + (1− αnl)snc).

The Economic Interpretation of AUDI. Theorem 1 highlighted that the effect of

macroeconomic shocks on real GDP is mediated by a single statistic, which is the economy’s

11The assumption of invertibility is without loss of generality, as the underlying volatilities σz
nt and σM

t

are drawn from smooth distributions and the mapping from these volatilities to responsiveness is continuous.
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Augmented-by-Uncertainty Domar Index (AUDI). I refer to elements of this index as AUDI

weights. This index gives us a well-defined measure of sectoral importance, as its weights

measure how a sectoral productivity shock in one sector affects real GDP. By definition, as a

sector’s AUDI weight increases, productivity disturbances in that sector have a larger effect

on output. Moreover, it is straightforward to see that as the AUDI weight of any sector

increases, the impact of an aggregate demand shock on output decreases.

A key implication of incomplete information is that measures of sectoral importance

are state-dependent and shaped by the overall amount of uncertainty in the economy, as

mediated through the responsiveness matrix Ωt. Sectors that have a high AUDI weight (and

are thus systemically “important”) when there is a high level of responsiveness might not be

systemically important when responsiveness is low. Thus, to understand which sectors are

important and when, it is critical to understand their placement within the network structure

of the economy.

To interpret how AUDI relates to a sector’s position in the production network structure

and how this depends on input responsiveness Ωt, I study the simple but illustrative case

in which all firms have a common level of responsiveness, ωnn′t = ω∗
t . We then obtain the

following result.

Proposition 5. Suppose ωnn′t = ω∗
t for all n, n′ ∈ N . Then, one can express AUDI as:

ϵ(ω∗
t )

′ = γ′




∞∑

k=0

(
ω∗
t × (I− diag(bnt))

−1

︸ ︷︷ ︸
discounting weights

)k
Ak


 (I− diag(bnt))

−1 (26)

where the elements bnt of the diagonal matrix are defined as

bnt = (1− ω∗
t )(1− αnl)(1− snc) (27)

If ω∗
t ≤ 1, the matrix ω∗

t × (I− diag(bnt))
−1 has elements weakly less than unity. Moreover,

all elements are strictly increasing in ω∗
t .

Proof. See Appendix A.7.

Proposition 5 shows that AUDI has a simple economic interpretation: a sector’s impor-

tance is simply the discounted sum of its higher-order linkages, as captured by the power

sum of the matrix A. These higher-order linkages are discounted at a rate given by the

diagonal matrix ω∗ × (I − diag(bnt))
−1. This matrix reflects how much a firm responds to

input price changes in terms of its input quantities (ω∗
t ), as well as how effectively the firm

can adjust its output in response to changes in demand from its customers (as captured by
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the elements bnt). Because this matrix is diagonal, one can interpret incomplete information

as attaching different relative weights to these higher-order linkages.

Furthermore, observe that these discounting weights are increasing in firms’ common

assumed responsiveness ω∗
t . Intuitively, higher-order linkages become more important in

propagating shocks through the economy as firms become more responsive to input prices in

terms of their input purchases. In the extreme case in which firms are entirely unresponsive

to price changes (ω∗
t = 0), output only responds to productivity disturbances of the most

downstream firms — that is, for firms that sell directly to the consumer. This contrasts

sharply to the complete information benchmark, in which the effect of a sectoral productivity

disturbances on real GDP is equal to that sector’s Domar weight, irrespective of the sector’s

position in the production network.

Away from a common responsiveness ω∗
t , one cannot transparently characterize AUDI as

in Proposition 5 and the more general Theorem 1 applies. Nevertheless, I show later that a

common responsiveness arises endogenously for all firms when one source of macroeconomic

uncertainty dominates. The following corollary summarizes how AUDI weights depend on

input responsiveness and its implications for real GDP under this simplification.

Proposition 6. Assume a common firm-level responsiveness ωnn′t = ω∗
t and suppose that

αnn ≥ (1− αnl)(1− snc) for all n ∈ N . Then,

1. The AUDI weights for each sector are weakly increasing in ω∗
t .

2. The effect of a productivity shock in sector n ∈ N on real GDP (d log Ct/d log znt) is

weakly increasing in ω∗
t .

3. The effect of an aggregate demand shock on real GDP (d log Ct/d logMt) is weakly

decreasing in ω∗
t .

Proof. See Appendix A.8.

Connection to Alpha Centrality. The above analysis implies that AUDI is related to

an extensively studied topic in the social network literature, which is the concept of a node’s

alpha centrality (Katz, 1953). The alpha centrality (AC) of a sector for a scalar α ∈ [0, 1] is

defined as follows:

AC = γ′(I− αA)−1 = γ′
∞∑

k=0

αkAk (28)

Intuitively, alpha centrality captures how “central” a sector is in an economy, where connec-

tions to distant sectors are penalized by an attenuation factor α. The relevant attenuation

factor in our framework is not a scalar, but is captured through the diagonal discounting
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Figure 3: Simple Network Structures

(a) Horizontal Economy
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weights in Proposition 5. However, if we assume that all sectors have a common labor share

αnl = αl and a common revenue share of consumption snc = sc, we can indeed write this

attenuation factor in terms of a scalar α(ω∗
t ):

α(ω∗
t ) ≡

ω∗
t

1− (1− αl)(1− sc)(1− ω∗
t )

(29)

where it is easy to check that α(ω∗) ∈ [0, 1] if and only if ω∗ ∈ [0, 1].12 The systemic

importance of a sector under incomplete information is therefore given by its alpha centrality

(up to a scaling factor), where the alpha centrality parameter is determined endogenously

by the production network structure of the economy and the nature of firms’ uncertainty.

3.5 Examples: Sectoral Importance and Input Responsiveness

In this section, I use Theorem 1 to illustrate how sectoral importance is shaped by input

responsiveness in three simple network structures.

Example 1: A Horizontal Economy. Consider first a horizontal production network

economy, depicted in Figure 3a. Here, labor is the only factor of production for all sectors.

Since there are no input-output linkages, the presence of incomplete information is irrelevant.

The effect of a sectoral productivity shock on real GDP is independent of input responsiveness

and equal to that sector’s Domar weight (its revenue share in household expenditures, γn),

as in the complete information economy.

12Of course, there is no a priori economic restriction that α(ω∗) ∈ [0, 1]. If α(ω∗) > 1, the vector ϵ(ω∗)′

is still well defined as long as the infinite sum in Proposition 5 converges.
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Corollary 1. In the horizontal production network economy, real GDP is given by

log Ct = cons+
∑

n∈N

γn log znt + χ logMt (30)

where the constant is independent of time t variables.

Proof. See Appendix A.9.

Example 2: A Roundabout Economy. Consider the roundabout production network,

depicted in Figure 3b. Firms in sector 1 purchase labor (with input share 1−α1) and inputs

from their own sector (with input share α1). The dynamics of real GDP can be analyzed

through a scalar ω∗
t , which is the elasticity of input purchases to price changes in the firm’s

own sector.

Corollary 2. In the roundabout economy, real GDP is given by:

log Ct = cons+

(
1

1 + α1(1− ω∗
t )

× 1

1− α1

)
log z1t +

(
χ− α1ω

∗
t

1 + α1(1− ω∗
t )

)
logMt (31)

where the constant is independent of time t shocks.

Proof. See Appendix A.10

This corollary emphasizes that the sectoral importance in the roundabout economy de-

pends on how much weight is attached to the sector’s own input share, where this weight is

mediated by the responsiveness parameter ω∗
t . To see this, observe that we may write AUDI

in this economy as:

ϵ(ω∗
t ) =

1

1− α2
1(1− ω∗

t )

∞∑

k=0

ω∗
t

1− α2
1(1− ω∗

t )︸ ︷︷ ︸
discounting weight

α1 =

(
1

1 + α1(1− ω∗
t )

)
× 1

1− α1︸ ︷︷ ︸
Domar Weight

(32)

This representation makes it clear that input responsiveness weights the economy’s

higher-order linkages according to ω∗
t . Whenever ω∗

t ∈ (0, 1), the AUDI weight of the round-

about sector is equal to an attenuation factor that multiplies its complete information Domar

weight. Moreover, it is straightforward to see that the impact of productivity shocks on out-

put is increasing in ω∗
t , while the impact of aggregate demand shocks on output is decreasing

in ω∗
t , in line with Proposition 6.

Example 3: A Vertical Economy. Finally, consider a vertical supply chain economy,

as in Figure 3c. I denote the labor share of sector n as 1 − αn and the input share of its

upstream supplier αn. I also let ωnt denote the input responsiveness for sector n’s input.
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Corollary 3. Real GDP in the vertical supply chain economy is given by:

log Ct = cons+
∑

n∈N

ϵn(Ωt) log znt +

[
(1− αN)χ−

N−1∑

k=1

ϵN−k(Ωt)(1− αN−k(1− χ))

]
logMt

where the constant is independent of time t shocks and the AUDI weight of sector n satisfies

the following recursion, with ϵN(Ωt) = 1:

ϵn(Ωt) =
αn+1ωnt

1− αn(1− ωnt)
× ϵn+1(Ωt) for n ∈ {1, . . . , N − 1} (33)

Proof. See Appendix A.11.

Corollary 3 states that the sectoral importance of a sector is shaped by the input re-

sponsiveness of all sectors that are downstream to it. In particular, the sectoral importance

of sector N , the most downstream sector, is equal to unity and independent of input re-

sponsiveness. This formalizes the prediction of Section 3.3, which showed that incomplete

information does not affect sectoral importance for the most downstream sectors. Moreover,

it is straightforward to see that if firms in sector k become entirely unresponsive to input

prices in terms of their input purchases, ωkt−1 = 0, then sectoral productivity disturbances

in its upstream suppliers (n < k) have no effect on output.

3.6 Responsiveness and the Role of Uncertainty

The previous discussion highlighted that the macroeconomic implications of both sectoral

productivity disturbances and aggregate nominal disturbances depend on firms’ responsive-

ness to input price changes. In this section, I characterize how the responsiveness matrix Ωt

is shaped by the exogenous volatilities of underlying disturbances. I begin by relating input

responsiveness to the second moments of sectoral revenues and input prices.

Lemma 2. In all log-linear equilibria, input responsiveness is given by:

Ωt = [ωnn′t] =

[
1− Cov(logRnt, logPn′t)

Var(logPn′t)

]
(34)

where the variance and covariance are conditional on the shocks {znt−1}n∈N and Mt−1.

Proof. See Appendix A.12.

This Lemma is a consequence of the assumed log-normality of shocks and firms’ Cobb-

Douglas technologies, which implies that equilibrium revenues and prices are jointly log-
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normal whenever Ωt is independent of the realization of prices.13 This Lemma can be under-

stood through the following “OLS” interpretation: optimal responsiveness is the coefficient

that emerges when one regresses the optimal ex-post choice of inputs X∗
nn′t on its input price:

logX∗
nn′t = cons−

[
1− Cov(logRnt, logPn′t)

Var(logPn′t)

]

︸ ︷︷ ︸
OLS coefficient

× logPn′t + logX∗
nn′t − Et[logX

∗
nn′t| logPn′t]︸ ︷︷ ︸

error term

where recall that under complete information, optimal input expenditures are a constant

fraction of revenues Pn′tX
∗
nn′t = αnn′Rn′t . Thus, if input prices increase, a firm decreases its

inputs because they become more expensive. If higher input prices and revenues covary pos-

itively, it purchases more inputs in anticipation of higher demand. Both this cost component

and inference component shape firms’ optimal responsiveness to input prices.

Solution under Dominant Uncertainty Limits. I now use Lemma 2 to characterize

firms’ responsiveness as either productivity or demand uncertainty becomes large. To this

end, I define the uncertainty ratio unt of productivity to demand in sector n as:

unt =
σz
nt

σM
t

(35)

The ratios {unt}n∈N parameterize the extent of prior uncertainty about productivity shocks

relative to demand shocks. I now establish firms’ optimal input responsiveness as either

source of uncertainty dominates.

Theorem 2. If unt → 0 for all n ∈ N , then:

ωnn′t = − χ

1− χ
and

d log Ct
d logMt

= χ (36)

Suppose further that the matrix A is irreducible. If unt → ∞ for some n ∈ N , then:

ωnn′t = 1 and
d log Ct
d log zt

′
= γ′(I−A)−1 (37)

Proof. See Appendix A.13.

Theorem 2 shows that the impact of demand shocks on real GDP is equal to the full

information benchmark as uncertainty about demand becomes dominant. Intuitively, as

13This qualification is why, in principle, there could exist other equilibria in whichΩt takes other functional
forms. Another functional form for the responsiveness matrix could imply that revenues and prices are no
longer log-normal. The resultant joint stochastic process could then make the assumed functional form
for responsiveness self-fulfilling. Although I cannot rule out equilibria that are not log-normal, I have not
encountered such equilibria numerically.
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prior uncertainty about the money supply increases, firms believe that prices are driven by

nominal disturbances. For this reason, firms expect their revenues and prices to co-move

positively. This force induces firms to become less responsive to input price changes in terms

of their input purchases. From Proposition 5, this lowers the importance of higher-order

linkages in propagating shocks. Observe that firms are not at all responsive to input prices

(ωnn′t = 0) when there is no wage rigidity. In this case, nominal disturbances have no effect

on output and we recover monetary neutrality.

When uncertainty about productivity shocks becomes dominant, the effect of a sectoral

productivity shock on consumption is given by that sector’s complete information Domar

weight. Intuitively, as prior uncertainty about productivity shocks increase, firms believe

that prices are driven by real disturbances. For this reason, firms expect their revenues

to remain unchanged when faced with higher input prices. This force induces firms’ in-

put responsiveness to increase, thereby increasing the importance of higher-order linkages

in propagating shocks. Finally, the irreducibility condition on the input-output matrix A

ensures that all input prices respond to any given sectoral disturbance. Away from irre-

ducibility, the second statement of Theorem 2 is true if and only if the uncertainty ratio of

all sectors becomes large, so that unt → ∞ for all n ∈ N . Thus, the relative volatilities of

productivity and aggregate demand are critical in shaping real GDP dynamics through their

effect on input responsiveness, which is the key statistic that governs the aggregate impact

of shocks on the economy.

The Role of Relative Uncertainty. An implication of Theorem 2 is that total uncer-

tainty does not matter for equilibrium shock transmission. Rather, it is only the relative

uncertainty between different kinds of shocks that determines firms’ input responsiveness.

This generalizes a key prediction of the simple supply chain economy in Section 3.3.

Corollary 4. In equilibrium, Ωt is a function only of the relative uncertainty ratios {unt}n∈N ,

and does not additionally depend on total uncertainty {σz
nt}n∈N , σM

t .

Proof. See Appendix A.14.

This result states that small amounts of uncertainty can have big effects. Concretely, even

vanishingly small amounts of uncertainty imply that the equilibrium can differ substantially

from the complete information benchmark. As such, the basic mechanism of the model

which suggests firms use input prices to form inferences about their revenues is preserved in

environments of low uncertainty.

The Roundabout Economy Revisited. Equilibrium responsiveness and dynamics can

be solved in closed form for the roundabout economy in Figure 3b. Because a firm’s input
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Figure 4: Responsiveness and the Effect of Shocks on Real GDP

(a) Input Responsiveness (b) Effect of Shocks on GDP

Note: Left panel: This figure plots the optimal responsiveness in a roundabout economy given by
Proposition 7. Right panel: the associated pass-through of a productivity and aggregate demand
shock to real GDP, d logGDPt

d log x , for x ∈ {z1t,Mt}, as a function of relative uncertainty about produc-
tivity to aggregate demand shocks. Parameterization: (α1, χ) = (0.5, 0.3).

price in this network is also its output price, optimal responsiveness is given by:

ω∗
t = 1− Cov(logRnt, logPnt)

Var(logPnt)
(38)

We can solve for this fixed point using the dynamics for revenues and prices (Proposition 3).

Proposition 7. Optimal responsiveness ω∗
t in the roundabout economy is given by:

ω∗
t = 1− 1

1 + (1−α1)−2

1+α1−χ
u2
1t − χ

(39)

Proof. See Appendix A.15.

Proposition 7 shows that there exists a unique firm responsiveness to input prices that

is only a function of relative uncertainty in the economy. Figure 4 plots firms’ optimal

responsiveness as a function of relative uncertainty (left panel) and the associated dynamics

for real GDP in response to a productivity and demand shock (right panel). As productivity

uncertainty increases, firm’s respond one-to-one to input price changes and the pass-through

of productivity shocks to output converges to the complete information benchmark, while

the pass-through of demand shocks to output decreases.
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Implications for the State-Dependent Effects of Shocks. An implication of Theo-

rem 2 is that shocks that feature a large uncertainty have a larger pass-through to real GDP.

For example, higher productivity uncertainty raises firms’ input responsiveness. In light of

Proposition 6, this increases the pass-through of productivity shocks to output and increases

firms’ AUDI weights. Conversely, higher demand uncertainty makes firms less responsive

and increases the pass-through of demand shocks to output. Thus, it is exactly when un-

certainty about an underlying shock is highest that the shock has the greatest impact on

macroeconomic dynamics.

Moreover, these results suggest that Domar weights can function as particularly poor

measures of sectoral importance in times of high demand uncertainty. When demand uncer-

tainty is high, firms respond less to input price changes relative to complete information. As

we have seen, this implies that the AUDI weights of upstream sectors can decrease relative

to downstream sectors, even if all sectors in the economy have the same Domar weight. In

general, the effect of a sectoral productivity shock on real GDP depends on the kind of

uncertainty that firms face (real or nominal) and its position in the production network

structure of the economy.

3.7 Discussion and Extensions

Conditioning on Further Input Prices. Under Assumption 1, firms can condition their

quantity of an input demanded on its price, but not on the prices of other inputs. This

assumption is motivated both by the rational expectations literature, in which input choices

depend on local terms of trade, as well as the contracting interpretation of Section 2, in

which input deliveries are often negotiated bilaterally between a buyer and a seller.

Away from this assumption, one would have to analyze how firms’ demand functions

are shaped by a vector of endogenous public signals, which would render analyzing the

equilibrium intractable and not quantitatively implementable (as the state space scales ex-

ponentially in the number of observed variables). Thus, the buyer-input specific information

set of Assumption 1 allows me to tractably characterize the equilibrium while preserving

the key feature that firms may be learning from local economic conditions. Nevertheless,

even in this more general setting, the response of aggregate output to shocks is shaped by a

qualitatively similar notion of input responsiveness. In Appendix B.2, I show that real GDP

dynamics are identical to Theorem 2 under high aggregate demand uncertainty when firms

can condition their demand functions on any arbitrary subset of prices in the economy.

Extension to Monopolistic Competition. None of the results hinge on the assumption

of price-taking. In Appendix B.3, I show that the theoretical results are identical in a
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context where firms operate monopolistically and the government levies a subsidy to undo

the monopolistic distortion.

Allowing for More Flexible Inputs. I have assumed that labor can be scaled up or down

in accordance to realized demand. The fact that only labor can be adjusted frictionlessly is

not essential for the main results. In Appendix B.4, I allow any arbitrary subset SCI ⊂ N
of inputs to be chosen under complete information, while its complement SII = N /SCI is

chosen under incomplete information.

Interim Public Signals. In order to highlight the informational role of prices in shaping

macroeconomic fluctuations, I have abstracted from additional sources of information that

firms might receive when choosing their inputs. However, the model can accommodate

exogenous interim public signals about contemporaneous shock realizations, as modelled

in Angeletos et al. (2016) or La’O and Tahbaz-Salehi (2022). As is well known, the only

additional implication of interim public signals is that firms respond to shocks beyond the

information that may be conveyed through prices. For this reason, the main theoretical

results are unchanged to this modification. This extension is explored in Appendix B.5.

4 Quantitative Analysis: AUDI in the US

In this section, I study the model’s implications for the effect of productivity and aggregate

demand shocks on aggregate output when calibrated to the input-output structure and

historical measures of uncertainty in the US economy. First, I find that the impact of

aggregate productivity shocks on output is 50% lower during Covid (a time of relatively

high measured demand uncertainty) relative to the Dot-Com Bubble (a time of relatively

high measured productivity uncertainty) or non-crisis periods. Second, I show that this state-

dependence is linked to time-variation in estimated AUDI weights: the sectoral importance

of downstream sectors increases during times of relatively high demand uncertainty, while

the sectoral importance of upstream sectors increases when productivity uncertainty is high.

Overall, Domar weights can be poor measures of sectoral importance, particularly during

recessions. Hence, the results suggest that policymakers should account for uncertainty when

designing bailouts or industrial policy to promote output during crises.

4.1 Data

My analysis relies on three sources of data. First, I use the 2022 input-output tables con-

structed by the Bureau of Economic Analysis (BEA), which provides information on the
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intermediate input expenditures of each industry, contribution to final uses, and total em-

ployee compensation. Second, I use the March 2024 release of the BEA/BLS Integrated

Production Level Accounts (ILPA) which contains data on industry-level productivities at

an annual frequency over the 1987-2023 period. I use this data to obtain measures of the

time-varying productivity covariance matrix across industries. Finally, I use data on nominal

GDP to obtain measures of the time-variation in demand uncertainty. Recall that nominal

GDP in my model is given by ιtMt, where ιt = it/(1 + it) (c.f. Lemma 1). A key benefit

of this approach is that it captures nominal demand uncertainty generated by policy (as

captured through Mt) as well as demand uncertainty generated through changes in house-

hold behavior (as captured through the endogenous velocity term ιt), without separately

estimating a money growth rule.

I merge the BEA input-output data with the ILPA data at the 3-digit NAICS industry

level, while excluding industries that correspond to federal, state, and local governments. As

the ILPA data is slightly more aggregated than the BEA data, I attribute the productivity

of each BEA industry to its more aggregated counterpart, thereby obtaining a matched data

set of 66 industries.

4.2 Calibration

I interpret each period as a quarter. I calibrate the input-output matrix A and labor expen-

ditures {αnl}n∈N of each industry in the linearized economy to match the intermediate good

expenditure shares and compensation of employees in the BEA input-output data. I also

calibrate the final consumption shares γ to match the corresponding final consumption ex-

penditures in the data.14 Finally, I set χ = 0.915 to match the estimated covariance between

the log-changes in nominal GDP and wages over the sample period.

Next, I use the ILPA data to calculate the implied productivity variance-covariance

matrix over the 1987-2023 period. Concretely, I residualize the logarithm of productivity

for each sector on its lag following Equation 7. This gives me estimates of the productivity

residuals {ûz
nt}n∈N at the annual frequency. I use these residuals to obtain estimates of

time-varying productivity uncertainty using a multivariate GARCH model. In particular,

letting Zt denote the vector of residuals {ûz
nt}n∈N , I model

Zt ∼ N(0,Σt), Σt = D
1
2
t CD

1
2
t (40)

14Away from complete information (δ = 0), the model-implied input expenditure shares of each industry
are time-varying and a function of uncertainty. However, this time-variation is quantitatively small and does
not meaningfully change the calibrated input-output matrix A.
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where Dt is a diagonal matrix of time-varying variances, and C is a static matrix of corre-

lations. I assume that each diagonal element of Dt, denoted as σ2
i,t, evolves as:

σ2
i,t = si + αiû

2
i,t−1 + βiσ

2
i,t−1 (41)

with unknown constant si and coefficients (αi, βi). Formally, this is a GARCH(1,1) model

with constant conditional correlations (Bollerslev, 1990). I estimate all of the parameters

via joint maximum likelihood. As the ILPA data is only available at an annual frequency, I

assume that the variance is evenly distributed across all quarters.15 Finally, log-differencing

and demeaning the nominal GDP measure yields estimates of the demand residuals ûM
t

at the quarterly frequency. I similarly use a GARCH(1,1) process to obtain estimates of

time-varying demand uncertainty σ̂M
t .

In light of Theorem 2, it is only relative uncertainty that matters for the determinants

of firms’ optimal demand schedules. For this reason, my goal is to capture broad trends in

relative uncertainty about the economy’s underlying shocks. The GARCH approach provides

one parsimonious way of doing so.16 In my estimated model, uncertainty is high when there

is a large prediction error in the variables (αi > 0) and if uncertainty was high previously

(βi > 0). The assumption that the matrix C is time-invariant imposes all covariances to move

in proportion to the variances, thereby ruling out the possibility that the correlation structure

among productivity and demand shocks is changing over time. This makes estimation of

the time-variation in volatility feasible by significantly reducing the number of estimated

parameters and improving the convergence of the maximum likelihood algorithm.

Figure 5 plots the estimated average demand volatility σ̂M
t and average sales-weighted

productivity volatility
∑

n∈N λnσ̂
z
nt over the sample period. First, note that both series fea-

ture elevated volatility at times of NBER recession dates. This is consistent with the findings

of Jurado et al. (2015), who find periods of heightened uncertainty during recessions in a

model of stochastic volatility, and with Bloom et al. (2018), who find a negative correlation

of TFP dispersion with the cycle. While these works focus on how total volatility moves

with the cycle, my analysis suggests that changes in the relative volatilities of these series are

also important to understand macroeconomic dynamics. For example, my GARCH specifi-

cation shows that the Dot-Com bubble was characterized by large productivity uncertainty,

but relatively little demand uncertainty. In contrast, the Financial Crisis and Covid were

characterized by both high demand productivity uncertainty.

15Linearly interpolating the productivity data between quarters, as in La’O and Tahbaz-Salehi (2022),
gives quantitatively similar results.

16There are, of course, many possible statistical models to capture time-varying volatility. Latent-state
models that allow volatility to be directly affected by contemporaneous shocks obtain qualitatively and
quantitatively similar predictions to GARCH models (Jurado et al., 2015).
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Figure 5: Estimated Time-Varying Productivity and Demand Volatilities
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Note: This figure plots the estimated average demand volatility σ̂M
t (red dashed line) and average

productivity volatility weighted by sales-share to GDP
∑

n∈N λnσ̂
z
nt (blue solid line) over the sample

period, as estimated by the CCC GARCH model, described in Equations 40 and 41. Shaded regions
correspond to NBER recession dates.

Second, away from these times of elevated uncertainty, it is productivity uncertainty

that dominates demand uncertainty in “normal times”, defined as non-recessionary periods.

This is consistent with the interpretation that “granular” fluctuations that occur at the

sector-level are relatively more volatile than aggregate productivity disturbances (Gabaix,

2011; Acemoglu et al., 2016).17 Indeed Figure 9 in the Appendix shows that the conditional

volatility of aggregate TFP measures are an order of magnitude lower relative to their dis-

aggregated counterparts. A key implication of my theory is that uncertainty at the “micro”

level matters for the dynamics of output and prices, which cannot be recovered separately

from aggregated “macro” data.

Solving the Model. The GARCH model provides estimates of the time-variation in un-

certainty given by our estimates of the covariance matrix Σ̂t. With this estimate in hand,

we can solve for the linearized dynamics of the system obtained in Theorem 1. The key

challenge is to ensure that firm level responsiveness (as defined in Proposition 2) is consis-

17For example, Acemoglu et al. (2016) show that the contribution of sectoral volatility to aggregate output
volatility is proportional to the square of that sector’s Domar index. The relative contribution of each sector
to volatility in my framework is proportional to the square of their Augmented-by-uncertainty Domar index,
which is endogenous to economy-wide volatility.
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tent with the equilibrium stochastic properties of revenues and prices. Since the choice of

firm-level responsiveness shapes the stochastic properties of these objects, it is necessary to

solve for industry-level prices, revenues, and firms’ optimal responsiveness to input prices

jointly. This requires solving for 4488 endogenous variables for each estimate of underlying

uncertainty Σ̂t.
18

I implement a three-step procedure to solve for the dynamics of the system. First, I solve

for the linearized equilibrium dynamics by guessing a firm-level responsiveness matrix Ωt.

Second, I calculate the resulting covariance matrix of revenues and prices for each value of Σ̂t

and the implied optimal responsiveness matrix Ω∗
t using Equation 34. Third, I solve for the

matrix Ωt that obtains the roots of the residual Ω∗
t −Ωt = 0 through the Newton-Raphson

method. The responsiveness matrix Ωt is then a solution of the model, as it is consistent

with the model-implied stochastic properties of prices and revenues.

Having obtained the matrix of equilibrium firm-level responsiveness, we can estimate our

uncertainty-adjusted Domar indices (AUDI) as:

ϵ(Ωt)
′ = γ′

[
I−A⊙Ωt − diag

(
(1− αnl)×

∑

n∈N

snn′(1− ωn′nt)

)]−1

(42)

which measures the macroeconomic impact of sectoral productivity shocks. Note that these

measures primitively depend on firm-level responsiveness Ωt, which is a function of the

underlying uncertainty in the economy (Σ̂t, σ̂
M
t ).

4.3 Results: Sectoral Importance and Uncertainty

I now assess how my estimated measures of sectoral importance shape the impact of shocks

on (real) GDP over time. A useful counterfactual to gauge the relevance of these results is

to compare them to the benchmark case of complete information. On average, I find that

the impact of an aggregate productivity shock on real GDP is lower by only 4% relative

to the counterfactual economy with complete information. The intuition for this result

is straightforward. As seen in Figure 5, sectoral-level productivity uncertainty is generally

large relative to demand uncertainty. Firms thus perceive most of the variation in their input

prices to be attributed to real rather than nominal disturbances. According to Theorem 2,

the macroeconomic impact of sectoral productivity shocks therefore closely aligns with the

complete information benchmark.

However, the macroeconomic impact of an aggregate shock changes substantially in times

18There are 2 × 66 total sectoral-level prices and revenues and 662 demand schedules, as each sector
implements a demand schedule for each other sector.
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Figure 6: The Historical Impact of Aggregate Shocks on Output

(a) Aggregate Productivity Shock
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(b) Aggregate Demand Shock

1988 1992 1996 2000 2004 2008 2012 2016 2020
Date

0.75

0.80

0.85

0.90

dl
og

t/
dl

og
M

t

Incomplete Info

Complete Info

Note: This figure plots the pass-through of an aggregate productivity shock (left panel) and an
aggregate nominal demand disturbance (right panel) to real GDP over the period (1988Q1-2023Q1).
Shaded areas indicate NBER recession dates.

Table 1: Standard Deviation of Output Growth (1987-2023)

Data Model Complete Info Fixed Responsiveness

0.0119 0.0114 0.0148 0.009

Note: This table depicts the standard deviation of output growth for the sample period in the data,
model, and the complete information benchmark. The fixed responsiveness column indicates the
standard deviation of output that arises when firms’ estimated responsiveness (Ω̂t) is time-invariant
and fixed at its post-Covid average.

of high demand volatility, such as the financial crisis or in the aftermath of the Covid

pandemic. The elasticity of output to aggregate productivity decreases by 14% during the

financial crisis, and by 46% during Covid. Thus, incomplete information matters most

when firms are less able to distinguish whether changes in their costs are driven by demand

or supply disturbances. During these times, firms respond less to changes in their input

prices to hedge against uncertainty in their revenues. Moreover, this hedging behavior is

especially important for shaping output dynamics in times of high volatility. These results

are illustrated graphically in Figure 6a.

The theory also has implications for how aggregate nominal demand disturbances affect

output over time. Times of relatively high productivity uncertainty are associated with a

low pass-through of demand shocks to output. Conversely, output responds more to nominal

demand disturbances as the relative volatility of demand shocks increases. These predictions

are shown graphically in Figure 6b.
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Figure 7: Sectoral Importance and its Relationship to Size
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Note: These figures plot the economy’s AUDI weights as a function of their revenues share of GDP
(Domar weight) in normal times and Covid (2020 Q1-Q4). The responsiveness matrix in normal
times is calculated as

∑
t∈T

1
|T |Ω̂t, where T includes all non-recessionary quarters prior to 2020.

Time-Varying Volatility and the “Great Moderation”. A large body of literature

argues that smaller shock sizes and changes in the conduct of monetary policy can account

for the volatility decline in US output in the post-Volcker era (the “Great Moderation”).19

The results in this section suggest that changes in the relative volatilities of underlying

disturbances can also create meaningful time-variation in macroeconomic time series. For

example, more stable monetary policy (interpreted via a reduction in σM
t ) directly affects

output volatility for two reasons. First, shock sizes are smaller. Second, relatively lower de-

mand volatility increases firms’ responsiveness to input price changes, which further reduces

the impact of demand shocks on output (but increases the impact of productivity shocks).

Table 1 shows that this responsiveness channel is critical for the model to match the

volatility of output growth in 1987-2023. For example, counterfactually fixing firm-level

responsiveness to an “as if” scenario in which demand disturbances are twice as volatile over

the sample period reduces implied output volatility by 20%. Hence, shifts in the relative

volatilities of underlying economic disturbances — through their effect on agents’ policy

functions — may be an important, but understudied, feature in accounting for the stochastic

volatility of many macroeconomic variables.

19See, for example, Clarida et al. (2000), Justiniano and Primiceri (2008), and Gaĺı and Gambetti (2009).
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Sectoral Importance in Times of High Volatility. The preceding results demonstrated

that the responsiveness of output to productivity shocks has historically displayed large vari-

ations. This fact reflects that the importance of different input-output linkages in shaping

macroeconomic fluctuations is time-varying. But which sectors are most important in shap-

ing the dynamics of real GDP in volatile times?

Figure 7 plots the percentage impact of a sectoral productivity shock on output (which is

given by that sector’s AUDI weight) as a function of the sector’s revenue share of GDP (or

its corresponding Domar weight). Quantitatively, the model predicts that AUDI weights are

generally always lower than Domar weights (as seen by the fact that almost all sectors lie

beneath the dashed forty-five degree line). Moreover, there is a strong positive correlation

between a sector’s AUDI weight and its Domar weight in normal times (Figure 7a). This

rationalizes why the effect of an aggregate productivity shock on output is close to the

complete information benchmark, on average.

However, Domar weights are a poor predictor of sectoral importance in times of high

demand volatility, such as Covid (Figure 7b). In particular, large upstream sectors which

are traditionally important in normal times (such as credit intermediation, or administrative

and support services) are two of the least systemically important sectors during Covid. The

sectors with the highest AUDI weights during Covid are relatively more downstream sectors,

such as hospitals, retail, and housing services. Consequently, incomplete information delivers

an elasticity of output to sectoral productivity shocks that diverges significantly from the

foundational prediction of Hulten’s Theorem in the complete information benchmark, which

states that this elasticity should be equal to the sector’s sales share of GDP (Hulten, 1978).

In order to shed intuition on these findings, Figure 8 plots the economy’s input demand

matrices, defined by the input share of each input multiplied by responsiveness (A ⊙ Ωt),

during normal times and Covid. Sectors are sorted by the upstreamness measure of Antràs

et al. (2012), which captures the average number of rounds it takes for sectoral output to

reach the final consumer.20 Sorting sectors by upstreamness reveals a hierarchical structure

in production: there is a clear order in production in which downstream sectors purchase

from upstream ones (but not the reverse). This is because the matrix is dense below the

diagonal, but sparse above it.21

In normal times (Figure 8a), upstream sectors supply their inputs to many downstream

firms, and these firms are responsive to input price changes. Hence, they have a high AUDI

weight. During Covid, however, the economy’s input demand matrix becomes more sparse

20Formally, upstreamness is defined as U = (I−A′)−11, where 1 denotes a vector of ones.
21Liu and Tsyvinski (2024) also note this hierarchical production structure for the US economy. Liu (2019)

demonstrates that this hierarchical structure is also a feature of the Chinese and South Korean economies.
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Figure 8: The Economy’s Input Demand Matrices in Different Time Periods: A⊙Ωt

(a) Normal Times (b) Covid

Note: These figures depict the economy’s input demand matrices, defined as the Hadamard product
between the input-output matrix and responsiveness, A⊙Ωt. The responsiveness matrix in normal
times is calculated as the average responsiveness

∑
t∈T

1
|T |Ω̂t, where T includes all non-recessionary

quarters prior to 2020.

(Figure 8b), as firms reduce their optimal input demand elasticities in response to heightened

demand uncertainty. Consequently, productivity disturbances in upstream sectors have a

lower impact on final household consumption. In contrast, productivity disturbances from

downstream sectors travel through fewer linkages until they reach the final consumer. Thus,

their AUDI weight increases relative to upstream sectors.

Table 2 shows how sectoral importance changes over different recessionary episodes. The

Dot-Com bubble was characterized by high productivity uncertainty, and therefore features

high AUDI weights. The financial crisis and Covid were characterized by relatively high

demand uncertainty, and thus sectors’ AUDI weights decreased. Moreover, upstream sectors

generally feature the greatest variation in their AUDI weight, precisely because their alpha

centrality in the production network is changing over time. Housing, for example, is a sector

that does not enter as an input into any other industry. For this reason, its AUDI weight is

stable and the sector increases in relative importance in times of high demand uncertainty.

Industrial Policy: Which Sectors and When. Governments often undertake bailouts

or industrial policies to promote aggregate output. These policies have been increasingly used

by advanced economies to navigate times of crisis. For example, during the financial crisis,

the US government undertook financial sector support through, inter alia, its Troubled Asset
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Table 2: Time-Variation in Sectoral Importance for the Ten Largest Sectors

Sector % Change in AUDI: ϵ(Ω̂t)/ϵ(Ω̂Normal)− 1 Upstreamness

Dot Com Financial Crisis Covid
Miscellaneous services 0.01 -0.14 -0.66 8.67
Wholesale trade 0.00 -0.10 -0.26 9.63
Credit intermediation 0.03 -0.08 -1.06 6.60
Other real estate 0.00 -0.11 -0.43 9.36
Construction 0.00 -0.13 -0.33 2.71
Admin. & support services 0.01 -0.23 -0.86 9.16
Housing 0.00 0.00 0.00 1.00
Insurance carriers 0.01 -0.10 -0.37 7.03
Other retail 0.00 -0.04 -0.06 1.63
Chemical products 0.00 -0.10 -0.33 7.63

Note: This table shows changes in a sector’s AUDI weight over time, alongside its corresponding
upstreamness measure. Upstreamness is the average distance to final use, defined as in Antràs
et al. (2012). Industry indices have been shortened for readability. “Miscellaneous services” corre-
sponds to “Miscellaneous professional, scientific, and technical services”, “Credit intermediation”
corresponds to “Federal Reserve banks, credit intermediation, and related activities”, “Insurance
carriers” corresponds to “Insurance carriers and related activities”.

Relief Program (TALP) and Capital Purchase Program (CPP). It also promoted stability in

the real estate sector via its Home Affordable Modification Program (HAMP). During Covid,

the government explicitly designed policies that targeted the health care sector (CARES

Act), education (ESSER Act), and telecommunications (BEAD program).

In all cases, these selective interventions were temporary measures designed to navi-

gate the economy through volatile macroeconomic conditions. A key benefit of the AUDI

weights is that they take the state of the economy into account when measuring sectoral

importance. Upstream sectors with many linkages should be subsidized in times of high

productivity uncertainty. In contrast, downstream sectors that produce goods and services

for final household consumption should be subsidized in times of high demand uncertainty

— precisely because the alpha centrality of these sectors is relatively high during these times.

Consequently, the model provides a rationale for promoting the health care, education, and

telecommunications sectors during Covid in addition to the positive health-related external-

ities that these sectors may have provided during the pandemic. Conversely, it provides a

rationale for not promoting traditionally important sectors (such as finance and insurance)

when demand uncertainty is relatively high.
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5 Conclusion

A key assumption in many models of production networks is to assume that firms operate

under complete information of the large vector of shocks that hits the economy. In this

paper, I study how sectoral productivity disturbances aggregate to economy-wide fluctua-

tions when firms choose inputs under incomplete information about shocks. The uncertainty

generated by incomplete information affects how firms’ input purchases respond to cost

changes, generates spillovers through input-output linkages, and has large implications for

the macroeconomic impact of microeconomic shocks.

Theoretically, I show that the impact of sectoral productivity shocks on real GDP is

shaped by the interaction between uncertainty and the economy’s production network struc-

ture. Productivity shocks in upstream sectors have large effects on aggregate output when

relative uncertainty about productivity to aggregate demand shocks is high. In contrast,

shocks to downstream sectors become more influential in shaping the dynamics of output

when aggregate demand uncertainty is high. Quantitatively, I find that incomplete infor-

mation generates measures of sectoral importance that diverge significantly from traditional

metrics (such as Domar weights), especially during economic downturns. Thus, the results

emphasize the importance of accounting for economic uncertainty when designing industrial

interventions during times of crises.

This study is only a first exploration within the context of how incomplete information

shapes the microeconomic origins of aggregate fluctuations. I highlight two important im-

plications of my analysis that I leave open for future research. First, I have documented

that firms’ input demand elasticity to input prices is a key determinant in shaping the ag-

gregate impact of sectoral productivity shocks. Future work that directly measures these

input elasticities at a granular level would be valuable in disciplining a large class of produc-

tion networks models in which firms interact with their suppliers through markets. Second,

this work has abstracted from the normative implications of incomplete information and

the effect of shocks on household welfare. Studying optimal industrial policy and monetary

stabilization rules in this context would be an interesting research avenue for the future.
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A Omitted Proofs

A.1 Proof of Lemma 1

Proof. We use the households’ first-order condition to derive an expression for the real

stochastic discount factor (PtCt)−1 in terms of the money supplyMt. From the intratemporal

Euler equation for consumption demand vs. labor supply, we can obtain an expression for

the frictionless wage rate w∗
t :

w∗
t = PtCt (43)

From Equation 5, the wage rate therefore satisfies the recursion:

wt = (wt−1)
χ(PtCt)1−χ (44)

From the intertemporal Euler equation between consumption and money today, the cost of

holding an additional dollar today equals the benefit of holding an additional dollar today

plus the value of an additional dollar tomorrow:

1

PtCt
=

1

Mt

+ βEt

[
1

Pt+1Ct+1

]
(45)

Further, from the intertemporal choice between bonds, the cost of saving an additional dollar

today equals the nominal interest rate 1+it times the value of an additional dollar tomorrow:

1

PtCt
= β(1 + it)Et

[
1

Pt+1Ct+1

]
(46)

Combining these two equations, we obtain that aggregate consumption follows:

PtCt = ιtMt (47)

where ιt = it/(1 + it). This equation implies that nominal expenditures are proportional to

money balances. Note further that the Cobb-Douglas aggregator over final sectoral goods in

household preferences implies that expenditure shares are constant:

PntCnt = γnPtCt = γnιtMt (48)

Finally, the nominal interest rate adjusts to clear the bond market. Substituting Equation

46



47 back into Equation 46, we obtain a recursion that interest rates must satisfy:

1 + it
it

= 1 + βEt

[
1 + it+1

it+1

Mt

Mt+1

]
(49)

As money follows a random walk, solving this equation forward and employing the house-

hold’s transversality condition, we obtain that:

1 + it
it

= 1 + β exp

{
−µM +

1

2
(σM

t+1)
2

}(
1 +

∞∑

i=1

i∏

j=1

β exp

{
−µM +

1

2
(σM

t+j+1)
2

})
(50)

which is deterministic, but depends on the full future path of monetary volatility.

A.2 Proof of Proposition 1

Proof. Substituting firms’ demand functions into their production function, we obtain

Qnt = znt

(
Rnt

wt

)αnl ∏

n′∈N

(
Rnt

Pn′t

)αnn′

Multiplying by sectoral prices yields

Rnt = zntPnt

(
Rnt

wt

)αnl ∏

n′∈N

(
Rnt

Pn′t

)αnn′

Taking logarithms and cancelling revenues in this expression, we can write in in matrix form:

(I−A) logPt = − log zt + diag(αnl) logwt

where we use the short-hand notation diag(xn) to denote a diagonal matrix with elements xn

and logwt is short-hand for logwt×1, where 1 is a |N | vector of ones. Since 1−
∑

n′∈N αnn′ =

αnl for all n ∈ N , we can rewrite the above expression as:

(I−A) logPt = − log zt + (I−A) logwt

Using Lemma 1 and the fact that logwt = χ logwt−1 + (1−χ) logw∗
t then yields the desired

expression. Note that the invertibility of the matrix I−A follows from the fact that it is an

M-matrix, as its row-sums are positive and strictly less than unity (Johnson, 1982).
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A.3 Proof of Proposition 2

Proof. Firms maximize their risk-adjusted profits. They therefore solve:

max
Xnn′t

= E[(PtCt)−1Πnt

∣∣Inn′t] (51)

where Inn′t denotes the firm n’s information set when purchasing inputs from sector n′. We

have the following first-order condition:

E


(PtCt)−1


αnn′Pntcnznt (Lnt)

αnl
∏

k∈N/n′

X
αnk′
nk′t X

αnn′−1
nn′t − Pn′t



∣∣∣∣Inn′t


 = 0

which yields

E


(PtCt)−1


αnn′Pntcnznt (Lnt)

αnl
∏

k∈N/n′

X
αnk′
nk′t X

αnn′−1
nn′t



∣∣∣∣Inn′t


 = E

[
(PtCt)−1Pn′t

∣∣Inn′t

]

Since Xnn′t is measurable with respect to Inn′t, we can multiply both sides of this equation

by Xnn′ to obtain

E

[
(PtCt)−1

(
αnn′Pntcnznt (Lnt)

αnl
∏

n′∈N

X
αnn′
nn′t

)∣∣∣∣Inn′t

]
= Xnn′tE

[
(PtCt)−1Pn′t

∣∣Inn′t

]

We can write this as:

E
[
(PtCt)−1Rnt|Inn′t

]
= Xnn′tE[(PtCt)−1Pn′t|Inn′t] (52)

where Rnt = PntQnt denotes sectoral revenues. Using the fact that (PtCt) = ιtMt from

Lemma 1, dividing by E[(PtCt)−1Pn′t|Inn′t], and letting Inn′t = Pn′t then yields the result.

The demand function for labor is derived by solving:

max
Lnt

Πnt

Simple manipulations then yield the result. This completes the proof.
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A.4 Proof of Proposition 3

Proof. The demand function for inputs is given by

Xnn′t = αnn′

Et

[
(PtCt)

−1Rnt

∣∣∣Pn′t

]

Et

[
(PtCt)−1Pn′t

∣∣∣Pn′t

] (53)

Substituting into the firm’s production function 6 and multiplying by Pnt yields:

Rnt = zntPnt

(
Rnt

wnt

)αnl ∏

n′∈N




Et

[
(PtCt)

−1Rnt

∣∣∣Pn′t

]

Et

[
(PtCt)−1Pn′t

∣∣∣Pn′t

]




αnn′

(54)

We can combine market clearing with firm’s optimal demand schedules for inputs (Equa-

tion 53 to obtain:

Rnt = PntCnt +
∑

n′∈N

αn′nPnt

Et

[
(PtCt)

−1Rn′t

∣∣∣Pnt

]

Et

[
(PtCt)−1Pnt

∣∣∣Pnt

] (55)

We can then combine equations 54 and 55 with the expression for nominal expenditures 47

and 48 to obtain a characterization of revenues and prices in terms of exogenous variables:

Rnt = c̃ntzntPnt

(
Rnt

M1−χ
t

)αnl ∏

n′∈N




Et

[
M−1

t Rnt

∣∣∣Pn′t

]

Et

[
M−1

t Pn′t

∣∣∣Pn′t

]




αnn′

(56)

Rnt = γnιtMt +
∑

n′:n∈N

αn′nPnt

Et

[
M−1

t Rn′t

∣∣∣Pnt

]

Et

[
M−1

t Pnt

∣∣∣Pnt

] (57)

where c̃nt = (ιt)
αnl(1−χ)wαnlχ

t−1 , wχ
t−1 is independent of time t shocks, and ιt follows a deter-

ministic sequence. This proves the claim.

A.5 Proof of Proposition 4

Proof. Observe that logP1t is log-normal, being the product of log-normal variables. Using

properties of conditional expectations for log-normal variables, we have that

log Ct = cons+
Cov(logMt, logP1t)

Var(logP1t)
logP1t − logP1t
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Using the derivation of logP1t in Equation 20, we have:

log Ct = cons+
(1− χ)(σM

t )2

(1− χ)2(σM
t )2 + (σz

1t)
2
logP1t − logP1t

Collecting the terms involving logP1t and dividing by (σM
t )2 then yields the claim.

A.6 Proof of Theorem 1

We begin by proving the following Lemma. To simplify notation, we let x̂ := log x.

Lemma 3. Around, δ → 0, the dynamics of the economy are characterized by the following

system of equations:

(1− αnl)R̂nt = cons+ ẑnt + P̂nt − αnl(1− χ)(M̂t)−
∑

n′∈N

αnn′ωnn′tP̂n′t (58)

R̂nt = sncM̂ +
∑

n′∈N

snn′(1− ωn′nt)P̂nt (59)

where the constant is independent of time t shocks.

Proof. By definition of Ωt, firms use log-linear demand schedules:

Xnn′t = ω̃nn′tP
−ωnn′t
n′t (60)

where ωnn′t can potentially depend on the realization of Pn′t, but ω̃nn′t is independent of time

t shocks. For firms’ flexible inputs, we have:

Xnn′t = αnn′
Rnt

Pn′t
(61)

Substituting Equations 60 and 61 into the production function 6, taking logarithms and

re-arranging then yields Equation 58 directly. To derive Equation 59, we may substitute the

demand for rigid inputs into the market clearing equation 11. This yields:

Rnt = γnιtMt + Pnt

∑

n′∈N

ω̃n′ntP
−ωn′nt
nt (62)

Log-linearizing this expression yields around δ = 0 yields

R̂nt = cons+ sncM̂t +
∑

n′∈N

snn′(1− ωnn′t)P̂nt (63)
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where

snc =
γn∑

n′∈N αn′nλn′ + γn
=

γn
λn

and snn′ =
αn′nλn′∑

n′∈N αn′nλn′ + γn
=

αn′nλn′

λn

(64)

and where λn are the full-information Domar weights given by:

λ = (I−A′)−1γ (65)

We can now prove the Theorem.

Proof. For ease of notation, define A(ωt) = A ⊙Ωt and S(ωt) = [snn′(1 − ωn′nt)]. Observe

that Equation 59 can be written in matrix form as:

R̂t = cons+ (I− S)M̂t + diag(S(ωt)1)P̂t (66)

Next, observe that Equation 58 can be expressed as:

diag(A1)R̂t = cons+ ẑt + (I−A(ωt))P̂t − (1− χ)(I−A)M̂t (67)

We may substitute for R̂t to obtain:

diag(A1)
[
(I− S)M̂ + diag(S(ωt)1)P̂t

]
=

cons+ ẑt + (I−A(ωt))P̂t − (1− χ)(I−A)M̂t

(68)

Rearranging the above expression then yields:

[
I−A(ωt)− diag((1− αnl)×

∑

n∈N

snn′(1− ωnn′t))

]
P̂t =

cons− ẑt + diag((1− αnl)snc + (1− χ)αnl)M̂t

(69)

and note that, by assumption, the matrix multiplying P̂t is invertible. We can also express

as 66 as

R̂t = cons+ diag(snc)M̂t + diag

(∑

n′∈N

snn′(1− ωn′nt)

)
P̂t (70)

Finally, note that real GDP is given by

Ĉt = log(ιtMt)− P̂t (71)
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where the ideal price index is given by

P̂t = γ′P̂t (72)

Substituting for P̂t from 69 into the real GDP equation 71 then yields the desired result.

A.7 Proof of Proposition 5

Proof. We let

D(ω∗
t ) = diag

(
(1− αnl)×

∑

n∈N

snn′(1− ω∗
t )

)

We first note that we can write

I− ω∗
tA−D(ω∗

t ) = (I−D(ω∗
t ))
(
I− (I−D(ω∗

t ))
−1ω∗

tA
)

(73)

where I−D(ω∗) is invertible for ω∗
t ∈ [0, 1] given the assumption that

∑
n′∈N αnn′ < 1 and∑

n′∈N snn′ ≤ 1.

Next, we show that I− (I−D(ω∗))−1ω∗
tA is an M-matrix. To this end, observe that the

diagonal elements of this matrix are given by

1− ω∗
tαnn

1− (1− ω∗
t )
∑

n′∈N αnn′
∑

n′∈N snn′
(74)

We therefore require that

1− ω∗
tαnn − (1− ω∗

t )
∑

n′∈N

αnn′

∑

n′∈N

snn′ > 0 (75)

Note that this expression is strictly positive for ω∗
t = 0 and ω∗

t = 1 (given the assumption

that
∑

n′∈N αnn′ < 1 and
∑

n′∈N snn′ ≤ 1). Since this is a linear function of ω∗
t it is therefore

strictly positive for all ω∗ ∈ [0, 1].

Next, observe that all elements of (I−D(ω∗
t ))

−1ω∗
tA are weakly positive. Moreover, the

sum of each row of this matrix is given by

ω∗
t

∑
n′∈N αnn′

1− (1− ω∗
t )
∑

n′∈N αnn′
∑

n′∈N snn′
< 1 (76)

By the Gershgorin Circle Theorem, the norm of the principal eigenvalue of this matrix is less

than unity. Hence, (I −D(ω∗
t ))

−1ω∗
tA is an M-matrix. Its inverse can therefore be written
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as the power sum:

[
I− (I−D(ω∗

t ))
−1A(ω∗

t )
]−1

=
∞∑

k=0

(
ω∗
t (I−D(ω∗

t ))
−1A

)k
(77)

Moreover, the matrix ω∗
t (I−D(ω∗

t ))
−1 is diagonal with elements given by

ω∗
t

1− (1− ω∗
t )xn

(78)

for xn < 1. This ratio is therefore increasing for all ω∗
t ∈ R. Hence, the elements of this

matrix are increasing in ω∗
t . This completes the proof.

A.8 Proof of Proposition 6

Proof. We let

D(ω∗
t ) = diag

(
(1− αnl)×

∑

n∈N

snn′(1− ω∗
t )

)

Observe that statements two and three are immediate if we can show that AUDI weights

are element-wise increasing in ω∗
t . In order to show that the AUDI weights are element-wise

increasing, it suffices to show that the inverse of E ≡ I −A ⊙ Ωt −D(Ωt) is element-wise

increasing.

First, observe that E is an M-matrix (Johnson, 1982) for ω∗ ∈ [0, 1], since the sum of its

rows are strictly positive and strictly less than unity for ω∗ ∈ [0, 1]. Hence, by Gershgorin

Circle Theorem, the norm of the principal eigenvalue of this matrix is less than unity.

Since E is an M-matrix, we can write its inverse as:

E−1 =
∞∑

k=0

(A⊙Ωt −D(Ωt))
k (79)

It thus suffices to show that A⊙Ωt−D(Ωt) is element-wise increasing in ω∗. All off-diagonal

elements of the matrix are clearly increasing in ω∗. All diagonal elements are increasing in

ω∗ if and only if αnn ≥ (1− αnl)(1− snc). The result then follows.

A.9 Proof of Corollary 1

Proof. The total revenues of each sector are given by PntCnt = γnPtCt. Hence, the Domar

weight for each sector is given by γn. The result then follows from Proposition 1.
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A.10 Proof of Corollary 2

Proof. The result follows by noting that s11 = α1 in the roundabout network economy.

Substituting for s11 into the definition of ϵ(Ωt) in Proposition 5 yields the AUDI weight

of the roundabout sector. The effect of productivity and demand on output follows from

Theorem 1.

A.11 Proof of Corollary 3

Proof. We use Lemma 3 of the Appendix to derive the equilibrium dynamics of the system.

For ease of notation, we denote x̂ = log x. Using Equations 58 and 59 for sector 1, we obtain

the following:

P̂1t = cons+−ẑ1t + (1− χ)M̂t (80)

For sector n ∈ {2, . . . , N − 1}, we obtain:

R̂nt = cons+ (1− ωnt)P̂nt (81)

which implies that we can solve for prices as:

P̂nt = cons+
1

1− αn(1− ωnt)

[
ẑnt − (1− αn)(1− χ)M̂ − αnωn−1tP̂n−1t

]
(82)

For sector N , we have:

P̂Nt = cons+ αNM̂t − ẑNt + (1− αN)(1− χ)M̂t + αNωN−1tP̂N−1t (83)

Moreover, from Corollary 1, we have:

P̂t + Ĉt = P̂Nt + Ĉt = cons+ M̂t (84)

This implies that Ct is given by:

Ĉt = cons+ χ(1− αN)M̂t + ẑNt − αNωN−1tP̂N−1t (85)

Observe that the AUDI weight of sector N is equal to unity, as claimed. Solving this

difference equation backwards using P̂1 as a terminal condition then yields the AUDI weight

recursion. The effect of productivity shocks on output follows by the definition of AUDI

weights. The effect of an aggregate demand shock on output then follows by straightforward

calculation.
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A.12 Proof of Lemma 2

Proof. First, the expression for revenues follows directly from Theorem 1 and is derived in

Appendix A.6 (Equation 70). Next, note that given the assumption of log-normality for

the shocks {znt}n∈N and Mt, prices and revenues are also jointly log-normally distributed

under the assumption that Ωt is independent of Pt. We will now verify that an equilibrium in

which revenues and prices are log-normally distributed exists, with an optimal responsiveness

matrix Ωt that is independent of shock realizations.

Under the assumption of log-normality, the demand schedule for inputs chosen under

incomplete information satisfies

Xnn′t = αnn′

exp
{
µRnt|Pn′t

+ 1
2
σ2
PtCt|Pn′t

+ 1
2
σ2
Rnt|Pn′t

+ σPtCt,Rnt|Pn′t

}

exp
{
µPn′t|Pn′t

+ 1
2
σ2
PtCt|Pn′t

+ 1
2
σPn′t|Pn′t

+ σPtCt,Pn′t|Pn′t

} (86)

where σX,Y |Z = Cov(logX, log Y | logZ) and µX|Z = E[log X̂| logZ]. Using standard Gaus-

sian formulas for conditional expectations, we have:

µRnt|Pn′t
= µRnt +

σRnt,Pn′t

σ2
Pn′t

(logPn′t − µPn′t
) (87)

µPn′t|Pn′t
= log P̂n′t (88)

All other variances and covariances are independent of logPn′t. Hence, we have that

− logXnn′t

logPn′t
= 1− Cov(logRnt, logPn′t)

Var(logPn′t)
(89)

which is independent of the realization of prices Pnt. This verifies the initial conjecture of a

responsiveness matrix independent of Pt with log-normally distributed prices and revenues.

A.13 Proof of Theorem 2

Proof. I first prove the first statement of the Theorem. I let x̂ = log x for notational sim-

plicity. From Equations 58 and 59, the dynamics of the economy are given by:

(∑

n′∈N

αnn′

)
R̂nt = cons+ ẑnt + P̂nt − αnl(1− χ)M̂t +

∑

n′∈N

αnn′E[R̂nt|P̂n′t] (90)
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R̂nt = cons+ sncM̂t +
∑

n′∈N

snn′E[R̂n′t|P̂nt] (91)

I now suppress dependence on time indices for notational simplicity. We guess that there

exists a solution to the above system of equations in which R̂nt is linear in shocks:

R̂n = cons+ χR
nMM̂ +

∑

n′∈N

χR
nn′ ẑn′ (92)

for scalars {χR
nn′}n′∈N and χR

nM . We similarly guess that prices are linear in shocks:

P̂n = cons+ χP
nMM̂ +

∑

n′∈N

χP
nn′ ẑn′ (93)

We further assume that χP
nM > 0 for all n ∈ N , a guess that will be verified later. Observe

that due to the log-normality of the aggregate shocks, we have that:

E[R̂n|P̂ñ] =
Cov(R̂n, P̂ñ)

Var(P̂ñ)
P̂ñ (94)

for n, ñ ∈ N . Further, observe that if un → 0, then:

E[R̂n|P̂ñ] =
χR
nM

χP
ñM

Pñ (95)

We substitute our guess in Equation 91 and collect coefficients on M̂ :

χR
nM = snc +

∑

n′∈N

snn′χR
n′M (96)

We can rewrite this in matrix form as:

χR
M = (I− S)1 + SχR

M (97)

χR
M = (I− S)−1(I− S)1 = 1 (98)

where χR
M is the N -sized vector of χR

nM . Hence, χR
nM = 1 for all n ∈ N is the unique solution

to this equation when unt → 0. We now need to solve for χP
nM to obtain the firms’ demand

schedules. Using Equation 90 and χR
nM , we obtain:

0 = χP
nM − αnl(1− χ)−

∑

n′∈N

αnn′χP
n′M (99)
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Solving this system of equations yields:

χP
M = 1− χ (100)

where χP
M is the N -sized vector of χP

nM . Note this vector has strictly positive elements given

the assumption that χ < 1. Hence, using the definition of a demand schedule, we have:

ωnn′ = 1− 1
χP
n′M

= − χ
1−χ

. The linearity of revenues and prices then follows from Theorem 1.

Finally, note that
dĈt
dM̂t

= 1− γ′P̂t = 1− (1− χ) = χ (101)

This proves the first statement of the Theorem.

We now prove the second statement of the Theorem. We again guess that there exists a

solution to the system of equations 90 and 91:

R̂n = cons+ χR
nMM̂ +

∑

n′∈N

χR
nn′ ẑn′ (102)

for scalars {χR
nn′}n′∈N and χR

nM . We similarly guess that prices are linear in shocks:

P̂n = cons+ χP
nMM̂ +

∑

n′∈N

χP
nn′ ẑn′ (103)

We now guess that χR
nn′ = 0 for all n, n′ ∈ N . Using the log-linearity of the shocks, this

implies that:

E[R̂n|P̂ñ] =
χR
nMχP

ñMσ2
M

Var
(∑

n′∈N χP
ñnzn′

)
+ χñMM̂

(104)

Note that if un → ∞, E[R̂n|P̂ñ] = 0 if χP
ñn > 0, a condition which we will verify momentarily.

Using Proposition 2, we observe that E[R̂n|P̂ñ] = 0 is equivalent to ωnn′ = 1 for all n, n′ ∈ N .

Furthermore, recall that revenues are given by Equation 66, which can be written as:

R̂t = [I− diag(b1, . . . , bN)] M̂t + diag(c1, . . . , cN)P̂t (105)

where bn =
∑

n′∈N snn′ and cn =
∑

n′∈N snn′(1 − ωn′nt). If ωnn′t = 1, revenues are indeed

independent of productivity shocks. This verifies the guess that χR
nn′ = 0.

We now need to verify that χP
n′n > 0, which will prove that E[R̂n|P̂n] = 0. From Theorem

1, the elasticity of output to productivity shocks is given by:

(I−A)−1 =
∞∑

k=0

Ak (106)

57



Hence, the pass-through of a productivity shock from sector n to all other sectors is non-zero

if, for each n′, there exists some finite k ∈ N such that [Ak]nn′ > 0. By Theorem 8.3.5 in

Meyer (2023), this condition is satisfied if and only if the matrix A is irreducible. Finally,

note that
dĈt
dẑt

′

= −γ′P̂t = γ′(I−A)−1 (107)

This proves the second statement of the Theorem.

A.14 Proof of Corollary 4

Proof. From Lemma 2, one can express prices logPt and revenues logRt as a linear combi-

nation of shocks in any log-linear equilibrium. Hence, optimal responsiveness is a ratio of

linear combinations of underlying shock variances. One can therefore divide both numerator

and denominator by a constant and leave underlying responsiveness unchanged. Hence, one

can always normalize one variance without affecting equilibrium responsiveness.

A.15 Proof of Proposition 7

Proof. Substituting the first-order response of revenues into Equation 38, we obtain:

ω∗ = 1− αnn(1− ω∗
nt)− (1− αnn)

Cov(logMt, logPnt)

Var(logPnt)
(108)

From Corollary 2, we have that

logPnt = cons+
1

1 + αnn(1− ωnt)

[
−(1− αnn)

−1ẑnt + (1 + αnn − χ) logMt

]
(109)

Substituting for logPnt into Equation 108 yields the desired expression after straightforward

calculations.

B Model Extensions

B.1 Equivalence to Bilateral Contracting

The model in the main text assumed that input purchases are made under incomplete in-

formation in a spot market. Below, I show that the informational structure in the main

text arises endogenously in a model in which firms negotiate input purchases bilaterally ex-

ante. Formally, these cost-contingent bilateral contracts implement demand schedules that

are equivalent to Proposition 2.
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Primitives. To make the model amenable to this contracting interpretation, I assume that

there exists a continuum of identical firms in each sector n, indexed by i ∈ [0, 1]. Firms in

each sector sell to a market maker in their own sector, who aggregates production in its

respective sector. This market maker then contracts with firms in other sectors. Technology

remains otherwise unchanged and labor continues to be purchased in spot markets.

Contracting under Uncertainty. A firm i ∈ [0, 1] in sector n negotiates bilaterally with

a market maker in sector n to purchase inputs Xin,n′,t. As all firms are symmetric, the cost

of market maker n to produce each input is simply by given the common price charged by

all firms in that sector, Pnt.

Prior to the realization of {znt}n∈N and Mt, the firm i ∈ [0, 1] and the market maker

negotiate a cost-contingent transfer τin,n′t(Pn′t) as well as cost-contingent input delivery

Xin,n′,t(Pn′t) via Nash bargaining. The firm and supplier therefore choose transfers and

input deliveries to maximize the generalized joint surplus:

(
Et

[
1

PtCt

(
Π̃in,t(Pt)

)])β (
Et

[
1

PtCt
(
τin,n′,t(Pn′t)− Pn′tXin,n′,t(Pn′t)

)])1−β

(110)

where β parameterizes the firm’s bargaining power. The expectation conditions on the past

shocks {znt−1}n∈N and Mt−1. The variable Π̃in,t denotes the firm’s nominal profits post-

transfer:

Π̃in,t(Pt) = Pnt [Qin,t(Pt)]− wtL
d
in,t −

∑

k∈N

τin,k,t(Pk′t) (111)

Note that profits depend on the entire vector of costs Pt through input deliveries (thereby

changing the quantity produced Qin,t) and transfer payments made to final good producers.

However, the contract between firm i in sector n and the market maker in sector n′ is only

contingent on the market maker’s costs (and not the on the costs of other sectors). This is

an intuitive theoretical and practical restriction, which I discuss further below: the terms of

trade of the contract do not depend on the costs of other suppliers.

We can solve this contracting problem for the functions Xin,n′,t(Pn′t) and τin,n′,t(Pn′,t)

using variational methods. The proposition below characterizes the optimal cost-contingent

input deliveries:

Proposition 8. The optimal contract satisfies

Xin,n′,t(Pn′t) = αnn′
Et[(PtCt)−1Rnt|Pn′t]

Et[(PtCt)−1Pn′t|Pn′t]
(112)

Proof. See Appendix C.1

59



Hence, this contracting interpretation implements the same demand function as in Propo-

sition 2. This formally shows that negotiating input-deliveries on an ex-ante basis is equiv-

alent to purchasing inputs in a spot market under the informational structure considered

in the main text. Intuitively, the optimal contract delivers the optimal input choice upon

observation of Pn′t on an ex-post basis. This result can be understood through the following

“re-contracting” principle: if the optimal contract did not satisfy Proposition 8, both par-

ties would want to recontract upon observation of the market maker’s costs Pn′t. Moreover,

observe that the allocations are independent of firms’ bargaining power. This is because the

Nash bargaining solution is constrained efficient in the Pareto sense. The transfer function,

however, will depend on bargaining weights, but characterizing the transfer function only

affects the distribution of profits and is not needed to solve for real allocations.

Discussion of Contracting Assumptions. The contingency assumption on contracts

in this section are based on theoretical and empirical grounds. The preceding discussion

assumed that the contract is contingent on the supplier’s costs, but not on other stochastic

variables (such as the supplier’s revenues).22 This assumption is meant to capture the idea

that the supplier’s costs can be verified at the time of input delivery, while other random

variables (such as the firm’s revenues from the use of those inputs) are still uncertain. Of

course, in theory, there is nothing that prevents the firm and the supplier from specifying

a fully contingent contract ex-ante which would allow the parties to implement the perfect

information allocation ex-post. Such contracts, however, are complex and costly to write

(Battigalli and Maggi, 2002) and are therefore not commonly observed in practice. Indeed,

the “vast majority” of contracts in the building and construction industry, for example, are

“simple” contracts of a cost-contingent nature (Bajari and Tadelis, 2001). Moreoever, the

literature suggests that simple cost-contingent contracts are widely used in other sectors,

such as air force engine procurement (Crocker and Reynolds, 1993), defense (Hiller and

Tollison, 1978), or the Indian software industry (Banerjee and Duflo, 2000).

B.2 Conditioning on Additional Prices

In this subsection, I consider equilibrium dynamics when firms can condition their input

choices on additional input prices. Concretely, suppose firms also observe a subset of input

prices Pn ⊂ N when making their input choices. We let Int denote the set {Pnt}n∈Pn .

Following the analysis in the main text, it is straightforward to compute firms’ optimal

choice of inputs:

Xnn′t = αnn′
Et[(Mt)

−1Rn′t|Pn′t, Int]

Et[(Mt)−1Pn′t|Pn′t, Int]
(113)

22Note that the contract can be contingent on the firm’s and the supplier’s beliefs about these variables.
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Similarly, following Proposition 3, we can express equilibrium revenues and prices as the

system of equations:

Rnt = c̃ntzntPnt

(
Rnt

M1−χ
t

)αnl ∏

n′∈N




Et

[
M−1

t Rnt

∣∣∣Pn′t, Int

]

Et

[
M−1

t Pn′t

∣∣∣Pn′t, Int

]




αnn′

(114)

Rnt = γnιtMt +
∑

n′∈N

αn′nPnt

Et

[
M−1

t Rn′t

∣∣∣Pn′t, In′t

]

Et

[
M−1

t Pnt

∣∣∣Pn′t, In′t

] (115)

where c̃t = (ιt)
αnl(1−χ)(wt−1)

αnlχ.

The challenge with this formulation is that firms choose inputs on the basis of a vector of

endogenous public signals. The informativeness of this signal is determined by firms’ actions,

which in turn depend on the realization of the signal to begin with. Nevertheless, we may

obtain a variant of Theorem 2 in this more general setting. The following Proposition shows

that the dynamics for real GDP in this economy are equivalent to the economy in the main

text when aggregate demand uncertainty becomes large.

Proposition 9. As aggregate demand uncertainty becomes large, so that unt → 0 for all

n ∈ N , the stochastic process for real GDP is equivalent to an economy in which a firms’

input-specific information set only includes the price of that input.

Proof. See Appendix C.3.

This proposition shows that the dynamics of real GDP derived in Theorem 2 generalize to

settings that feature richer information structures. Of course, for simple network structures,

such as the roundabout economy of Figure 3b, the results in the main text are without loss

of generality because the firm is already conditioning its purchases on the price of all inputs

in the economy.

B.3 Extension to Monopolistic Competition

I now show that the model is isomorphic to one with monopolistic competition in which the

government levies an ad-valorem subsidy to undo the monopolistic distortion. Hence, the

price formulation of the market structure is immaterial for the main results.

Primitives. I only change the model’s market structure, and leave the household side of

the economy and informational structure unchanged. The model follows standard micro-

foundations in modeling production networks with firm market power (e.g. Basu, 1994;

Afrouzi and Bhattarai, 2023; La’O and Tahbaz-Salehi, 2022). There exist N sectors with
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input-output linkages, indexed by n ∈ N = {1, . . . , N}. In each sector n ∈ N , a continuum

of intermediate good producers indexed by i ∈ [0, 1] use labor and aggregate goods from

other sectors to produce an intermediate good under monopolistic competition. They sell

these goods to aggregate good producers within the same sector, who aggregate these in-

termediate varieties into a final sectoral good. In turn, aggregate good producers sell these

goods to households and other intermediate good producers.

Aggregate Good Producers. Competitive aggregate good producers purchase a contin-

uum of intermediate varieties i ∈ [0, 1] from its own sector n, and produces output Qnt using

a CES production function. They sell these sectoral goods to intermediate good producers

and households. The profit maximization problem of the firm is:

max
{xin,t}i∈[0,1]

PntQnt −
∫

i∈[0,1]
pin,txin,tdi s.t. Qnt =

(∫

in∈[0,1]
x

ηn−1
ηn

in,t di

) ηn
ηn−1

(116)

xin,t is the amount of variety in purchased at a given price of pin,t, Pnt is the aggregate

good’s production price, and ηn > 1 is the elasticity of substitution between varieties for

sector n. Note that this specification defines a standard iso-elastic demand function for each

intermediate good given by:

xin,t =

(
pin,t
Pnt

)−ηn

Qnt where Pnt =

(∫

i∈[0,1]
p1−ηn
in,t di

) 1
1−ηn

(117)

Given that aggregate good producers are perfectly competitive under constant returns to

scale, they earn zero profits and have zero value added. The purpose of these aggregator

firms is therefore to define a unified final good for each industry.

Intermediate Good Producers. There exist a continuum of i ∈ [0, 1] intermediate good

producers in sector n ∈ N . Each intermediate good producer i in sector n purchases aggre-

gate sectoral goods Xin,n′,t from sectors n′ ∈ N at a price of Pn′t as well as labor Lin,t at the

prevailing wage rate wt to produce an intermediate good xin,t. It then sells this intermediate

good monopolistically at a price of pin,t to a final good producer in its own sector. Inter-

mediate good producers in sector n produce with Cobb-Douglas technology under constant

returns to scale:

qin,t = cnznt (Lin,t)
αnl
∏

n′∈N

X
αnn′
in,n′,t (118)

I also assume that the government imposes an ad-valorem subsidy τn to all intermediate

good producers in sector n in proportion to their monopolistic mark-up. The firm’s profits
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are therefore given by:

Πin,t = (1 + τn)pin,tqin,t − wntLin,t −
∑

n′∈N

Pn′tXin,n′,t (119)

Intermediate Producers’ Demand Functions. Intermediate good producers choose

inputs under incomplete information shock realizations, but can condition each input choice

on the price of that input. If we can show that monopolistic competition implements the

same demand functions as in the perfect competition economy, the theoretical analysis in the

main text remains unchanged. The following Proposition shows that this indeed the case.

Proposition 10. Each firm i ∈ [0, 1] in sector n ∈ N implements a common demand

function for inputs in sector n′ ∈ N . These demand functions satisfy:

Xin,n′,t = αnn′
Et [(Mt)

−1Rnt|Pn′t]

Et [(Mt)−1Pn′t|Pn′t]
and Lnt = αnl

Rnt

wt

(120)

where the expectation conditions on t−1 shock realizations, and Rnt = Pnt×Qnt are sectoral

revenues.

Proof. See Appendix C.2.

Proposition 10 relies on two features of the monopolistic structure. First, the government

levies an ad-valorem subsidy, which undoes the monopolistic distortion. This ensures that

production is at its constrained efficient levels. Second, all intermediate good producers

within each sector are homogeneous. Thus, they behave symmetrically, charge the same

price, and choose the same number of each inputs. This ensures that the demand functions

of each sector are common across all firms. Consequently, the conclusions of my analysis do

not hinge on the assumptions pertaining to market structure considered in the main text.

B.4 Arbitrary Flexible Inputs

The main text assumed that labor is an input that adjusts to realized demand conditions,

and can thus frictionlessly be chosen to maximize profits under complete information. This

section generalizes some of the results in the main text to the case in which an arbitrary

subset of inputs is chosen under complete information, as in Pellet and Tahbaz-Salehi (2023).

Concretely, let SCI ⊂ N denote the subset of inputs chosen under complete information, and

suppose that the remaining inputs SII = N /SCI are chosen under incomplete information.
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Characterizing Prices with Arbitrary Flexible Inputs. First, note that the demand

schedule for flexible inputs is given by:

Xnn′t = αnn′
Rnt

Pn′t
(121)

for n′ ∈ SCI . We therefore obtain the following alternative to Proposition 3.

Proposition 11. Equilibrium prices {Pnt}n∈N and revenues {Rnt}n∈N satisfy the following

system of equations:

Rnt = c̃ntzntPnt

(
Rnt

M1−χn
t

)αnl ∏

n′∈SII




Et

[
M−1

t Rnt

∣∣∣Pn′t

]

Et

[
M−1

t Pn′t

∣∣∣Pn′t

]




αnn′

∏

n′∈SCI

(
Rnt

Pn′t

)αnn′

(122)

Rnt = γnιtMt +
∑

n′∈SII

αn′nPnt

Et

[
M−1

t Rn′t

∣∣∣Pnt

]

Et

[
M−1

t Pnt

∣∣∣Pnt

] +
∑

n′∈SCI

αn′nRn′t (123)

where c̃t = (ιt)
αnl(1−χ)(wt−1)

αnlχ.

Proof. Follows from the proof of Proposition 3.

We can also characterize the joint stochastic properties of revenues and prices, holding

responsiveness fixed. To this end, define the rigid revenue share matrix as:

Sr ≡ [snn′ × 1{n ∈ SII}] (124)

We also define the flexible revenue share matrix as:

Sf ≡ [snn′ × 1{n ∈ SCI}] (125)

We can also similarly define the rigid input-output matrix as Ar = [αnn′ × 1{n′ ∈ SII}]
and the flexible input out matrix Af = A − Ar.Finally, we define the demand-adjusted

input-output matrix and revenue-share matrix as Ar(ωt) = [αnn′ × ωnn′t × 1{n′ ∈ SII}] and
S(ωt) = [snn′ × (1− ωn′nt)× 1{n ∈ SII}].

Proposition 12. Assume
∑

n′∈N snn′ × 1{n ∈ SCI} < 1. Then, the first-order response of

demand and productivity shocks to prices and revenues is given by:

Z(ωt)P̂t = cons− ẑt + [(1− χ)(I−A) + diag(Ar1)(I− (I− Sf )−1diag(Sr1))]M̂t (126)

R̂t = cons+ (I− (I− Sf )−1Sr)M̂t + (I− Sf )−1diag(Sr(ωt)1))P̂t (127)
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where x̂t = log xt the matrix Z(ωt) is given by

Z(ωt) = I−Ar(ωt)−Af

︸ ︷︷ ︸
demand-adjusted
Leontief matrix

− diag(Ar1)(I− Sf )−1diag(Sr(ωt)1)︸ ︷︷ ︸
revenue impact

matrix

(128)

Proof. The result follows from the same steps taken in Theorem 1.

AUDI Weights for General Flexible Inputs. For a common responsiveness parameter

ωnn′t = ω∗, we can write the matrix Z(ω∗) as

Z(ω∗) = I− ω∗A− (1− ω∗)
(
Af + diag(Ar1)(I− Sf )−1diag(Sr1)

)
(129)

Under the assumption that Z(ω∗) is an M-matrix, we can write the effect of a productivity

shock on prices as the inverse of this matrix given by:

∞∑

k=0

[
ω∗A+ (1− ω∗)

(
Af + diag(Ar1)(I− Sf )−1diag(Sr1)

)]k
(130)

In this more general set-up, we see that the effect of productivity shocks to output is given

by a convex combination of the economy’s input-output matrix and demand impact matrix.

When ω∗ = 1, we recover the complete information result that the effect of productivity

shocks on prices is given by the Leontief inverse matrix L = (I−A)−1.

B.5 Interim Public Signals

In this section, I show how the model can accommodate an interim public signals. Concretely,

I assume that all firms in the economy receive a public signal given by

log spt = logMt + εpt (131)

where εp ∼ N(0, (σp
t )

2). I define the noise to signal ratio of aggregate demand to this public

signal as

κt =
(σM

t )2

(σM
t )2 + (σp

t )
2

(132)

Hence, as the precision of this signal increases, the signal to noise ratio tends to one. Under

this information structure, firms choose inputs according to:

Xnn′t = αnn′
Et[(Mt)

−1Rnt|spt , Pn′t]

Et[(Mt)−1Pn′t|spt , Pn′t]
(133)
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I now establish how this extension nests the complete information economy considered in

the main text and the benchmark complete information economy.

Proposition 13. The following statements are true.

1. When κt = 1, there exists an equilibrium in which the dynamics of real GDP are equal

to the dynamics of the complete information economy.

2. When κt = 0, there exists an equilibrium in which the dynamics of real GDP are equal

to the dynamics of the incomplete information economy considered in the main text.

Proof. See Appendix C.4.

Sectoral Importance under Fixed Responsiveness. I now derive a sectoral measure

of importance under this new information structure. As in the main text, I assume that firms

fix their input responsiveness according to the matrix Ωt. I then show how Ωt depends on

the economy’s stochastic structure for revenues, prices, and signals. We obtain the following

proposition, which forms the counterpart of Theorem 1 when firms receive interim public

signals.

Proposition 14. In the unique log-linear equilibrium of the economy, real GDP under fixed

responsiveness is given by:

log Ct = cons+ ϵ(Ωt)
′ log zt + [1− γ′diag(an)] logMt − γ′diag(bn) log s

p
t (134)

where the constant is independent of time t shocks and ϵ(Ωt) is the economy’s Augmented-

by-Uncertainty Domar Index (AUDI), derived in Theorem 1. Moreover, an and bn satisfy:

an = (1− χ)−(1− κt) [(1− αnl)(1− χ− snc)]

−κt

[
(1− χ)

(∑

n′∈N

αnn′ωnn′t + αnl

∑

n′∈N

snn′(1− ωn′nt)

)]
(135)

bn = κt

[
(1− χ− snc)(1− αnl)− (1− χ)

∑

n′∈N

αnn′ωnn′t

− (1− χ)(1− αnl)
∑

n′∈N

snn′(1− ωn′nt)

] (136)

Proof. See Appendix C.5.

This proposition reveals three observations. First, conditional on the same input respon-

siveness matrix, the impact of sectoral disturbances on output are identical to those in the
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main text. Second, the effect of an aggregate demand shock on output now depends on the

signal-to-noise ratio κt. When κt = 0, it is straightforward to verify that the impact of an

aggregate demand shock on output is identical to Theorem 1. Finally, whenever κt ̸= 0,

aggregate output responds to movements in this public signal, as it is informative about

aggregate demand disturbances.

A corollary of this result is that the connection to alpha centrality and the AUDI weights

of the economy extends to richer information structures. Hence, the basic insight that

incomplete information changes the relative importance of a sector’s higher-order linkages

in propagating macroeconomic shocks is preserved in these more general settings.

Optimal Responsiveness in General Equilibrium. I now analyze how firms’ optimal

input responsiveness is determined in this setting. The following Lemma is the counterpart

to Lemma 2 when firms receive interim public signals.

Lemma 4. There exists an equilibrium in which input responsiveness is given by:

Ωt = [ωnn′t] =

[
1− Cov(logRnt, logPn′t|spt )

Var(logPn′t|spt )

]
(137)

=


1−

Cov(logRnt, logPn′t)− Cov(logRnt,log s
p
t )Cov(logPn′t,log s

p
t )

Var(log spt )

Var(Pn′t)− Cov2(logPn′t,log s
p
t )

Var(log spt )


 (138)

Proof. See Appendix C.6

Lemma 4 shows that input responsiveness is determined by firms’ conditional expected

covariances between revenues and prices, and the conditional expected variance of input

prices. This result also lends itself to an OLS interpretation. In particular, optimal respon-

siveness is the coefficient that emerges when one runs an OLS regression of optimal ex-post

input choices X∗
nn′t on its input price and the public signal:

logX∗
nn′t = β0 + β1 logRn′t + β2σ

p
t + error (139)

The coefficient β1 is thus the OLS coefficient after one “partials out” the predictive power

of the public signal on input choices.

Takeaways from More General Information Structures. This section shows that the

model can be extended to accommodate interim public signals. Crucially, these richer infor-

mational structures preserve the key economics of the model: incomplete information shapes

input responsiveness which mediates the effect of shocks on aggregate output. Relative to

the model in the main text, the key difference is that input responsiveness is shaped by

67



firms’ expected covariance between their revenues and input prices, where this expectation

is conditioned by the realization of public signals.

C Additional Proofs

C.1 Proof of Proposition 8

Proof. We first note that all firms in each sector continue to be homogeneous. Hence, we

can write firms’ profits as

Π̃in,t(Pt) = Rnt − wtLin,t −
∑

n′∈N

τin,n′,t(Pn′t) (140)

where Rnt = PntQnt are sector-level revenues.

Suppose now that a given contract {τ ∗in,n′,t(Pn′t), X
∗
in,n′,t(Pn′t)} is optimal. Consider a

variation τ̃in,n′,t(Pn′t) = τ ∗in,n′t(Pn′t) + εh(Pn′t) for some ε > 0. The logarithm of the joint

surplus generated from this variation is given by

J(ε, h) = β logEt

(
1

PtCt
(Π̃in,t(Pt)− εh(Pn′t))−Of

)

+ (1− β)Et

(
1

PtCt
(τ ∗in,n′,t(Pn′t) + εh(Pn′t)− Pn′tX

∗
in,n′,t(Pn′t))−Os

) (141)

A necessary condition for optimality is that Jε(ε, h) achieves its maximum at ε = 0 for all

h(Pnt). Hence, we have the following necessary first-order condition:

−β

Et

[
1

PtCt (Π̃in,t(Pt))−Of

] + (1− β)

Et

[
1

PtCt (τ
∗
in,n′,t(Pn′t)− Pn′tX∗

in,n′,t(Pn′t))−Os

] = 0 (142)

which holds for all h(Pnt). We can also consider an identical variation for the input delivery

X̃in,n′t = X∗
in,n′,t(Pn′t) + εhx(Pnt). The necessary first-order condition that is obtained from

this variation is:

−βEt

[
1

PtCtαnn′Rnthx(Pn′t)
]

Et

[
1

PtCt (Π̃in,t(Pt))−Of

] +
(1− β)Et

[
1

PtCtPn′tX
∗
in,n′,t(Pn′t)hx(Pn′t)

]

Et

[
1

PtCt (τ
∗
in,n′,t(Pn′t)− Pn′tX∗

in,n′,t(Pn′t))−Os

] = 0 (143)

Combining the two first-order conditions yields the necessary condition

Et

[
1

PtCt
αnn′Rnthx(Pn′t)

]
= Et

[
1

PtCt
Pn′tX

∗
in,n′,t(Pn′t)hx(Pn′t)

]
(144)
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This is true for any function hx(Pn′t). We can therefore consider the Dirac function δP̂n′t
for

some P̂n′t ∈ R++. We then obtain

Et

[
1

PtCt
αnn′Rnt

∣∣∣∣∣P̂n′t

]
= Et

[
1

PtCt
Pn′tX

∗
in,n′,t(Pn′t)

∣∣∣∣∣P̂n′t

]
(145)

Since X∗
in,n′,t is adapted to Pn′t by assumption, we obtain

X∗
in,n′,t(P̂n′t) =

Et

[
(PtCt)Rnt|P̂n′t

]

Et

[
(PtCt)Pn′t|P̂n′t

] (146)

This completes the proof.

C.2 Proof of Proposition 10

Proof. Substituting the producer’s demand for intermediate inputs 117, as well as the inter-

mediate good producer’s production function 6 into their profits 119 and taking a first-order

condition with respect to Xin,n′,t, we obtain:

Xin,n′,t = αnn′

Ein,t

[
(PtCt)−1PntQ

1
ηn
nt q

ηn−1
ηn

in,t

∣∣∣∣Pn′t

]

Ein,t [(PtCt)−1Pn′t|Pn′t]
for n′ ∈ N (147)

Since firms in each sector are homogeneous, we have qin,t = Qnt. Moreover, since past

shocks {znt−1}n∈N and Mt−1 are common knowledge to all firms in the economy, we have

Ein,t = Et. The optimal input purchased is therefore proportional to industry-level revenues

over the price of that input

Xin,n′,t = αnn′
Et[(PtCt)−1Rnt|Pn′t]

Et[(PtCt)−1Pn′t|Pn′t]
(148)

The derivation of the demand function for labor follows by removing the expectation operator

from the above equation.
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C.3 Proof of Proposition 9

Proof. A sufficient condition for the dynamics of the two economies to be identical is that

for the demand function

Xnn′t = cons+ ω1
nn′tPn′t +

∑

n′∈Pn

ωk
nn′tPn′t

we have ωk
nn′t = 0 for k ̸= 1 and ωnn′t = − χ

1−χ
.

I now prove that this is an equilibrium. We proceed as in Theorem 2 by guessing that

there exists a solution to revenues and prices that is linear in shocks (where we suppress the

dependence on time indices for notational simplicity).

R̂n = cons+ χR
nMM̂ +

∑

n′∈N

χR
nn′ ẑn′ (149)

for scalars {χR
nn′}n′∈N and χR

nM . We similarly guess that prices are linear in shocks:

P̂n = cons+ χP
nMM̂ +

∑

n′∈N

χP
nn′ ẑn′ (150)

Observe that due to the log-normality of the aggregate shocks, we have that:

E[R̂n|P̂n′ , In] = [σRn,Pn′ , σRn,Pn ]Σ
−1[Pn′ ,Pn]

′ (151)

where Pn is the vector [Pn′ ]n′∈Pn and Σ is the variance-covariance matrix of the stacked

vector [Pn′ ,Pn]
′. However, observe that all elements of the variance-covariance matrix Σ

converge to [χP
nM × χP

kM ] for some n, k ∈ N as unt → 0. All elements will be identical, and

hence the matrix will be singular, if χP
nM is the same across all n ∈ N . Suppose this is the

case. In this case, we have that:

E[R̂n|P̂n′ , In] =
χR
nM

χP
n′M

Pn′ (152)

as Pn′ is collinear with In. We now proceed in similar steps to Theorem 2. Substituting the

above expression into Equation 91 and collecting coefficients on M̂ yields:

χR
nM = snc +

∑

n′∈N

snn′χR
n′M (153)

70



We can rewrite this in matrix form as:

χR
M = (I− S)1 + SχR

M (154)

χR
M = (I− S)−1(I− S)1 = 1 (155)

where χR
M is the N -sized vector of χR

nM . Hence, χR
nM = 1 for all n ∈ N is the unique solution

to this equation when unt → 0. We now need to verify that χP
nM is common across all firms.

Using Equation 90 and χR
nM , we obtain:

0 = χP
nM − αnl(1− χ)−

∑

n′∈N

αnn′χP
n′M (156)

Solving this system of equations yields:

χP
M = 1− χ (157)

which verifies our initial guess and gives us that our initial demand schedule is: ω1
nn′ =

1− 1
χP
n′M

= − χ
1−χ

with ωk
nn′ = 0 for k ̸= 1. This completes the proof.

C.4 Proof of Proposition 13

Proof. The second statement is trivial, as κt = 0 implies that the signal reveals no informa-

tion about aggregate demand. Thus, firms disregard the signal.

When κt = 1, the public signal perfectly reveals the aggregate demand shock. Assume

that the dynamics for real GDP and revenues are equal to the complete information economy,

given in Proposition 1. In this case, firms can perfectly infer their revenues from the aggregate

demand shock, as revenues are independent of sectoral productivity shocks. Hence, we can

write firms’ input choices as:

Xnn′t = αnn′
Et[(Mt)

−1Rnt|spt , Pn′t]

Et[(Mt)−1Pn′t|spt , Pn′t]
= αnn′t

Rnt

Pn′t
(158)

which are simply the complete information demand functions. This completes the proof.

C.5 Proof of Proposition 14

Proof. Under the assumption that firms use log-linear demand schedules with responsiveness

parameter ωnn′t, we have:

Xnn′t = ω̃nn′tP
−ωnn′t
n′t (159)
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by definition. Firm’s optimal choice of ω̃nn′t given a fixed responsiveness parameter of ωnn′t

is given by:

ω̃nn′t = αnn′
Et[(Mt)

−1Rnt|spt ]
Et[(Mt)−1P

1−ωnn′t
n′t |spt ]

(160)

We now use Equations 59 and 58 in the proof of Theorem 1. If ω̃nn′t is a log-linear function

of spt , then revenues and prices are log-linear as well. We conjecture the log-linearity of these

variables and later verify the log-linearity of ω̃nn′t. Since revenues and prices are log-linear,

we can exploit the conditional expectation properties of log-normal random variables to write

input choices under fixed responsiveness as

Xnn′t = ϕR
n log spt − ϕP

n′(1− ωnn′t) log s
p
t − ωnn′t logPn′t (161)

for some constants ϕR
n and ϕP

n′ . Linearizing the market clearing equation by following the

same steps as Theorem 1 and substituting in for Xnn′t yields

R̂nt = cons+ sncM̂t +
∑

n′∈N

snn′

(
(1− ωn′nt)P̂nt + ϕR

n′ ŝ
p
t − ϕP

n ŝP (1− ωn′nt)
)

(162)

where we use the short-hand notation x̂ = log x. Similarly, substituting for Xnn′t into firms’

production functions and taking logs yields

R̂nt =cons+ ẑnt + P̂nt + αnl(R̂nt − (1− χ)M̂t)−
∑

n′∈N

αnn′ωnn′tP̂n′t

+
∑

n′∈N

αnn′
(
ϕR
n ŝ

p
t − ϕP

n′(1− ωnn′tŝ
p
t )
) (163)

In matrix form, these equations are

diag(1− αnl)R̂t = ẑt + P̂t − (1− χ)M̂t − (A⊙Ωt)P̂t

+ diag(1− αnl)diag(ϕ
R
n )ŝ

P
t −A⊙ (1−Ωt)ŝ

P
t

(164)

and

R̂t = diag(snc)M̂t + diag

(∑

n′∈N

snn′(1− ωn′nt)

)
P̂t

+ Sdiag(ϕR
n )ŝ

P
t − diag

(∑

n′∈N

snn′(1− ωn′nt)

)
diag(ϕP

n )ŝ
P
t

(165)
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where 1 is and N × N matrix of ones. We now solve for the vector of coefficients ϕP and

ϕR. In particular, these must satisfy the consistency condition:

Et[R̂t|ŝPt ] = ϕR ⊙ ŝPt and Et[P̂t|ŝPt ] = ϕP ⊙ ŝPt

We first solve the first conditional expectation and collect coefficients on ŝPt . This yields

ϕR = κdiag(snc) + diag

(∑

n′∈N

snn′(1− ωn′nt)

)
ϕP + SϕR − diag

(∑

n′∈N

snn′(1− ωn′nt)

)
ϕP

which upon simplification yields

ϕR
n = κt for all n ∈ N

Similarly, we can solve the second expectation term to obtain

ϕP
n = κt(1− χ) for all n ∈ N

Substituting these derived coefficients into 164 and 165, and using the fact that

Ĉt = M̂t − γ′P̂t

then yields the desired result. Note also that this gives us the unique log-linear equilibrium

of the economy.

C.6 Proof of Lemma 4

Proof. Under the presumed functional form for input responsiveness, revenues, prices, and

the public are jointly log-normally distributed from Proposition 14. The formula then follows

from Lemma 2 and the conditional expectation properties of log-normal random variables.
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D Additional Figures

Figure 9: Aggregate Productivity Volatility Over Time
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Note: This figure plots the volatility of average sectoral productivity over time, alongside the
volatility of aggregate productivity. Aggregate productivity is obtained from the BLS’s website
and its volatility is estimated using a GARCH(1,1) model, as described in the main text.
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