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1 Introduction

We develop a framework to study the causes and consequences of price level dynam-

ics in an economy with three features: (i) a fiscal authority issues nominal debt to

finance committed real expenditures and transfers to households; (ii) a monetary au-

thority sets the short-term nominal rate on government debt;(iii) financial markets

are incomplete, so households have a precautionary motive to accumulate savings in

order to self-insure against idiosyncratic income risk.

Our interest in economies with the first two features is motivated by institutional

arrangements in the real world. Such economies have been extensively studied, most

recently under the label Fiscal Theory of the Price Level (FTPL).1 They have also

been a useful lens to analyze the most recent bout of inflation that followed large

expansions in government borrowing, a global supply shock due to the COVID-19

pandemic, and sharp interest rate movements by central banks around the world.

This literature has focused almost entirely on representative agent economies.

Our motivation for extending this analysis to “Bewley” economies (Bewley, 1987)

with heterogeneous agents and incomplete markets is three-fold. First, heterogeneous

agent models generate consumption responses to income and interest rates that are

consistent with the vast body of micro-economic evidence on the joint dynamics of

household income and spending.2 This property is important because household

spending pressure is a key force shaping inflation and interest rates in equilibrium.

Second, household heterogeneity has played an important role in both the drivers

and consequences of the current inflationary episode. Governments issued vast quan-

tities of new debt to finance transfers that were targeted to certain groups of house-

holds. The ongoing spending pressures that are leading many government to run

persistent deficits are also highly targeted. Quantitative heterogeneous agent models

are a natural environment to study the implications of such interventions, as well as

the distributional effects of shocks and subsequent policy responses.

1The FTPL literature, which has its roots in Sargent and Wallace (1981) and builds on Leeper
(1991), Sims (1994), Woodford (1995) and Cochrane (1998) is too vast to cite in full. See the
handbook chapter by Leeper and Leith (2016) and book by Cochrane (2023) for a synthesis of the
reach of FTPL models.

2See for example the review article by Kaplan and Violante (2022).
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Third, working in a heterogeneous-agent incomplete-market setting also overcomes a

limitation of representative agent FTPL models that makes their application to cur-

rent macroeconomic conditions problematic. Standard representative agent models

require governments to run positive primary surpluses in expectation at all points

in time. However, in recent decades the US has consistently run primary deficits,

and the fiscal positions of the US and many other developed economies look unlikely

to return to surpluses anytime soon.3 Heterogeneous agent versions of these models

offer a natural setting in which to study price level dynamics with persistent primary

deficits. In these versions, the real return on government debt r is less than the growth

rate of the economy g, which is also a feature of recent macroeconomic conditions.

This motivation leads us to start building a bridge between the well-studied

representative-agent FTPL and workhorse heterogeneous-agent models in the tra-

dition of Bewley (1987), Imrohoroğlu (1989), Huggett (1993) and Aiyagari (1994). In

this paper, we take a first step by focusing on flexible-price economies.4

Theoretical Analysis. We begin by analyzing an endowment economy in which

the government runs positive primary surpluses and r > g. Here, the conditions on

monetary and fiscal policy for the price level and inflation to be uniquely determined

are essentially unchanged from corresponding representative agent economies. There

are, however, important quantitative differences that reflect the role of precaution-

ary savings. Unlike in the representative agent economy, in the heterogeneous agent

economy changes in fiscal policy lead to movements in the real interest rate. This

is because a change in either the level of debt, or the size and distribution of sur-

pluses alters the overall demand for savings among households. For a given setting

of monetary policy, these different real rate dynamics imply different paths of infla-

tion. It also means that there are non-trivial inflation dynamics following a one-time

fiscal helicopter drop, and that the path of inflation depends on the targeting of the

fiscal injection. We use a modified representative agent model with bonds in the

3With the exception of 1998-2001, the US has not run a primary surplus since 1970. See Se-
ries FYFSD from FRED, Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org.
Moreover, the May 2023 10-year budget projections of the Congressional Budget Office (CBO)
estimate that deficits will remain negative at least until 2033: https://www.cbo.gov/data/

budget-economic-data
4In ongoing work we extend to economies with nominal rigidities. See Kaplan et al. (2023).
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utility function to provide intuition for these forces. We then analyze the same

heterogeneous-agent economy but with a government that runs a constant primary

deficit and r < g. We show that, as long as the level of deficits is not too large, equi-

libria with a finite price level where debt is valued exist. The maximum possible level

of deficits is decreasing in the amount of redistribution implicit in the tax and trans-

fer system: more redistribution reduces aggregate precautionary saving and increases

real interest payments on debt. For lower levels of deficits, there are generically two

steady-states. Thus, without additional assumptions, standard FTPL arguments do

not uniquely pin down the price level or the path of inflation. The steady-states are

Pareto ranked, with the high debt, high interest rate, low inflation steady-state deliv-

ering larger welfare to every household. The low inflation steady-state is saddle-path

stable: there is a unique initial price level and subsequent path of inflation and real

rates leading to that steady-state. The high inflation steady-state is locally stable:

there is a continuum of initial price levels that support paths of inflation leading to

that steady-state.

We discuss various extensions that deliver a unique prediction for the price level

and inflation. First, we propose modifications to the model that eliminate the high

inflation steady-state altogether, leaving only a unique saddle-path stable steady-

state. These modifications include (i) fiscal reaction rules that allow the level of

surpluses to respond to deviations of real debt or the real rate from steady-state; and

(ii) the introduction of a foreign sector with a relatively inelastic demand for domestic

government debt. Second, we propose a policy environment in which the central

bank successfully coordinates private sector expectations about long-run inflation.

By anchoring long-run inflation expectations to be consistent with the saddle-path

stable steady-state, uniqueness is also achieved in the short run, because all the

equilibria that converge to the high inflation steady-state are eliminated.

With uniqueness of equilibria in hand, we move to the quantitative analysis.

Quantitative Policy Messages. In the quantitative part of the paper, we conduct

a series of experiments to illustrate lessons for policy that emerge in the heteroge-

neous agent setting, but are concealed in more traditional representative agent FTPL

environments.

First, we consider the effects of permanently increasing deficits. We calculate
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that if the government were to permanently increase lump sum transfers to house-

holds without raising taxes, the largest sustainable primary deficit would be 4.6% of

GDP, or 40% higher than current levels. The maximum sustainable deficit depends

on the degree of social insurance: expanding deficits in a more progressive manner

implies lower maximum deficits. The reason is that tax systems that provide more

social insurance weaken precautionary savings, thus lowering household demand for

government debt. More progressive tax systems therefore reduce fiscal space.

A permanently higher deficit is associated with a lower steady-state real interest

rate and less real government debt, as well as a higher long-run inflation rate for a

given nominal rate target. This is because a larger deficit must be funded by larger

real interest receipts, which require a more negative real rate. The heterogeneous

agent framework thus offers an alternative interpretation of discussions around secular

stagnation by highlighting the connection between a rising primary deficit, falling real

rates and rising inflation.

Next, we study the effects of issuing new debt while holding primary deficits

constant: a fiscal helicopter drop. We consider a helicopter drop of around 16% of

annual GDP, roughly the size of the fiscal expansion in the US over the course of

the COVID-19 pandemic. Consistent with the representative agent experiments in

Cochrane (2022), we find that this generates an immediate jump in the price level.

However, relative to the representative agent benchmark, in our economy there is

an additional 30% initial increase in the price level. This amplification is driven by

redistribution and heterogeneity of marginal propensities to consume (MPC): in the

heterogeneous agent economy, the dilution of nominal debt entails large amounts of

redistribution from wealthy to poor households. This reallocation of wealth generates

upward pressure on consumption, which increases real rates and interest payments

on government debt, thereby causing a larger initial jump in the price level. A

targeted helicopter drop such as that implemented in the US, which targets high

MPC households, fuels additional short-term inflationary pressures.

Lastly, we study the effects of purely redistributive policies that hold both debt

and deficits constant, and show that budget neutral redistribution is inflationary. We

illustrate these effects by way of numerical experiments in which the government levies

a one-time wealth tax on household in the top percentiles of the wealth distribution,
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and redistributes the proceeds lump-sum to households in the bottom half of the

wealth distribution. As with the fiscal helicopter drop, real redistribution towards

high MPC households leads to a temporarily higher real interest rate and a downward

revaluation of real assets through a jump in the price level.

Related Literature. Our paper belongs to a small but growing literature that

moves beyond the representative agent model and explores the FTPL with incomplete

markets. Bassetto and Cui (2018) show that a model of overlapping generations and

a model in which government debt provides special liquidity services can give rise to

multiple steady-states in which the real interest rate on government debt is below the

growth rate of output. They emphasize that the FTPL can fail to yield price level

determinacy in these settings. Brunnermeier et al. (2020, 2022), Miao and Su (2021)

and Amol and Luttmer (2022) all study models with idiosyncratic risk in the rate of

return on capital, and explore settings for fiscal policy that can establish price level

uniqueness in low interest rate environments.

Our work differs from these papers in three respects. First, we investigate the

implications of the FTPL in a Bewley (1987) economy in which market incompleteness

arises from uninsurable labor income risk.5 In doing so, we emphasize the importance

of MPC heterogeneity in driving price level and inflation dynamics. Second, we

explore a wide class of fiscal, monetary, and institutional specifications and show how

they lead to price level uniqueness in models where the government runs persistent

primary deficits. Third, we quantitatively explore the response of economic aggregates

to unanticipated shocks in low-interest rate economies with persistent deficits. To the

best of our knowledge, the messages we deliver about the role of precautionary savings

and MPC heterogeneity in driving price level, inflation and real rate dynamics in this

class of economies are novel.6

Our work also relates to the literature that studies the implications of low interest

5Hagedorn (2021) also explores price-level determination in a “Bewley” economy with nominal
government debt, but focuses on a different class of fiscal policies outside FTPL.

6Some qualitative aspects of our analysis, such as equilibrium multiplicity with deficits, share
features with certain monetarist economies. See, for example, Chapter 18 of Ljungqvist and Sargent
(2018).
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rate environments for government borrowing (Aguiar et al., 2021; Blanchard, 1985,

2019; Cochrane, 2021; Kocherlakota, 2023; Mehrotra and Sergeyev, 2021; Reis, 2021).

This body of work emphasizes that the government can roll over debt indefinitely

when the real interest rate on government debt is below the growth rate of the econ-

omy.7 We show that this stark conclusion is correct only up to a limit: there is a

finite upper bound on primary deficits for there to exist an equilibrium in which gov-

ernment debt is valued. We quantify this bound in our calibrated model for the U.S.

economy and illustrate how it depends on the level of uninsurable income risk and on

the degree of fiscal redistribution.8

Finally, our work highlights the importance of household heterogeneity in deter-

mining interest rates and inflation. As such, it relates to work that explores the

distributional consequences of monetary policy and inflation (Doepke and Schneider,

2006; Coibion et al., 2017; McKay and Wolf, 2023) and the role of agent heterogeneity

in amplifying economic outcomes (Auclert et al., 2018; Kaplan et al., 2018; Auclert,

2019). In particular, we show that unanticipated changes in the price level can give

rise to non-trivial, persistent dynamics in the real interest rate and inflation due to

heterogeneous wealth effects across the distribution.

2 Model Environment

2.1 Households

Demographics. Time is continuous and is indexed by t ≥ 0. The economy is

populated by a continuum of households indexed by j ∈ [0, 1].

Endowments. Real aggregate output yt is exogenous and grows at a constant rate

g ≥ 0. Household j receives a stochastic share zjt of aggregate output. The shares

zjt are independent across households and a law of large numbers holds so that there

is no economy-wide uncertainty,∫
j∈[0,1]

zjtdj = 1 for all t ≥ 0. (1)

7Angeletos et al. (2023) show that in non-Ricardian economies with nominal rigidities, it is
possible for government deficits to be self-financing, even when r > g.

8The insight that the size of fiscal space depends on the use the government makes of this space is
shared by Mian et al. (2021a) and Amol and Luttmer (2022). However, precautionary saving plays
no role in the two-agent model of Mian et al. (2021a), and redistribution plays no role in the model
of Amol and Luttmer (2022) where all agents have the same MPC. In our economy, the strength of
consumption insurance and fiscal redistribution forces determined endogenously in equilibrium.
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In our baseline model we assume that zjt follows an N -state Poisson process with

switching intensities λz,z′ . The lowest value of the endowment share z is strictly

positive, z > 0, from which it follows that the natural borrowing limit is below zero.9

Not For Publication Appendix G presents a model in which zjt follows a diffusion.

Assets. Households trade a short-term risk-free bond that yields a nominal flow

return it. We denote the nominal bond holdings of household j at time t by Ajt. This

asset is the unit of account in the economy, and we let Pt denote the price of output

in terms of this short-term bond.

Preferences. Households take the path of aggregate variables {Pt, it, yt}t≥0 as given

and choose real consumption flows c̃jt to maximize

E0

∫
e−ρ̃t

c̃1−γjt

1− γ
dt (2)

with γ ≥ 0, where the expectation is taken over the idiosyncratic endowment process

zjt. We denote the household’s discount rate by ρ̃ > 0.

Nominal Household Budget Constraint. Initial nominal assets Aj0 are given.

For t > 0, households face a flow budget constraint

dAjt = [itAjt + (zjt − τt(zjt))Ptyt − Ptc̃jt] dt. (3)

The path of tax and transfer functions τt(z) is set by the fiscal authority and is de-

scribed in more detail below. Nominal savings dAjt are equal to the sum of asset

income itAjt and endowment income net of taxes and transfers (zjt − τt(zjt))Ptyt,

minus consumption expenditures Ptc̃jt. In our baseline model we assume that house-

holds cannot borrow Ajt ≥ 0, but we relax this assumption in Section 5. Online

Appendix E.1 contains an analysis of the model with borrowing.

Price Level and Inflation. Since this is a flexible-price economy, the price level

Pt may exhibit jumps. For ease of notation and exposition, we restrict the price level

to jump only at t = 0, after which it follows a deterministic path.10 Since there is no

9In our quantitative experiments in which we allow for borrowing, the interest rate on loans is
always positive so the natural debt limit is well-defined.

10Studying perfect foresight solutions with a single probability-zero jump at time zero is commonly
maintained in FTPL models (Leeper, 1991; Sims, 2011; Cochrane, 2018). The absence of aggregate
uncertainty implies that the price level cannot exhibit jumps for t > 0 in discrete time, representative
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intrinsic (i.e., fundamental) aggregate uncertainty, this implies perfect foresight over

aggregate variables for t > 0. For t > 0, we define the inflation rate by

dPt
Pt

= πtdt. (4)

De-trended Real Household Budget Constraint. We denote de-trended real

assets and de-trended real consumption as

ajt :=
Ajt

Pty0egt
cjt :=

c̃jt
y0egt

(5)

For t > 0, we can re-write the nominal budget constraint (3) in de-trended real terms:

dajt = [rtajt + zjt − τt(zjt)− cjt] dt (6)

where

rt := it − πt − g (7)

is the growth-adjusted real rate. At t = 0, de-trended real assets aj0 are given by the

ratio of initial nominal assets Aj0 to the endogenous initial price level P0.

Relative Asset Holdings. Let At and at denote aggregate nominal and aggregate

de-trended real household assets, respectively:

At :=

∫
j∈[0,1]

Ajtdj at :=

∫
j∈[0,1]

ajtdj

We denote the share of assets held by household j at time t by ωjt :=
Ajt

At
=

ajt
at
, with∫

j∈[0,1]
ωjtdj = 1 for all t ≥ 0. (8)

Recursive Formulation of Household Problem. Given paths of real rates rt

and taxes τt, the household problem can be expressed recursively via the Hamilton-

Jacobi-Bellman Equation (HJB)

ρVt(a, z)− ∂tVt(a, z) = max
c

c1−γ

1− γ
+ ∂aVt(a, z) [rta+ z − τt(z)− c]

+
∑
z′ ̸=z

λz,z′ [Vt(a, z
′)− Vt(a, z)] , (9)

agent FTPL models (Cochrane, 2023).
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together with the boundary condition ∂aVt(0, z) ≥ (z− τt(z))
−γ that ensures that the

borrowing constraint a ≥ 0 is satisfied. The growth-adjusted discount rate ρ in (9) is

defined as ρ = ρ̃− (1− γ)g.

The optimal consumption function ct(a, z) that solves the HJB is defined by

ct(a, z) = [∂aVt (a, z)]
− 1

γ . (10)

The associated savings function is denoted by

ςt(a, z) := rta+ z − τt(a, z)− ct(a, z) (11)

If a value function Vt(a, z) solves the HJB (9) and satisfies the boundedness condition

lim
T→∞

ET
[
e−ρTVT (ajT , zjT )

]
= 0, (12)

then the stochastic process for consumption defined by (10) solves the sequence ver-

sion of the household problem (2).11

The distribution of households across real asset holdings and endowment shares

gt(a, z) satisfies the Kolmogorov Forward Equation (KFE)

∂tgt(a, z) = −∂a [gt(a, z)ςt(a, z)]− gt(a, z)
∑
z′ ̸=z

λz,z′ +
∑
z′ ̸=z

λz′,zgt(a, z
′). (13)

Let ft(ω, z) denote the distribution of households across asset and endowment shares.

For a given path of aggregate real wealth at, ft(ω, z) and gt(a, z) are related by

ft(ω, z) = gt(ωat, z). (14)

The KFE is a backward-looking equation where the initial distribution g0(a, z) is

given.

2.2 Government

Nominal Government Budget Constraint. We assume a fiscal authority that

issues short-term nominal government debt Bt subject to the budget constraint:

11See Theorem 3.5.3 in Pham (2009). The expectation in (12) is with respect to the stochastic
process for idiosyncratic income and assets for household j, given by the budget constraint (6).
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dBt = [itBt − stPtyt] dt (15)

where st is the ratio of primary surpluses to output and is determined by the tax and

transfer function as

st =

∫
j∈[0,1]

τt (zjt) dj (16)

Equation (15) defines the evolution of nominal government debt. This is a backward-

looking equation where the initial level of nominal government B0 > 0 is given. We

restrict Bt ≥ 0 so that the government can only borrow and not lend.12

De-trended Real Government Budget Constraint. We denote de-trended real

government debt (or the debt-output ratio) by bt,

bt =
Bt

Pty0egt
. (17)

For t > 0, real debt bt evolves according to the real version of the government budget

constraint given by (15):

dbt = [rtbt − st] dt. (18)

Real debt increases whenever real interest rate payments exceed real primary sur-

pluses. At t = 0, de-trended real debt b0 is a jump variable given by the ratio of

exogenously given initial nominal debt B0 to the endogenous initial price level P0.

Fiscal Policy. For our baseline analysis we focus on a time-invariant tax and trans-

fer function τt(z) = τ ∗(z), so that surpluses or deficits are a constant fraction of real

output st = s∗. In Section 4.3, we generalize the analysis to allow for a broader class

of fiscal rules of the form

st = s(bt, rt). (19)

These rules allow primary surpluses to respond to real aggregate debt, real interest

rates or real interest payments and play an important role in determining the price

level when governments run persistent deficits, st < 0.

Monetary Policy. For our baseline analysis we focus on a nominal interest rate

peg it = i∗. In our quantitative analysis in Section 5 we allow for long-term debt

12Introducing government consumption would be subsumed in st in Equation (15), thereby leaving
the key mechanisms of our model unchanged.
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and a richer class of Taylor-type rules for nominal interest rates. We also discuss how

allowing for other monetary rules affects our results about the determination of the

price level and inflation in Section 2.3.

2.3 Equilibrium

We first define a real equilibrium as a collection of real variables which satisfy house-

hold optimality, are consistent with their laws of motion, and obey market clearing.

Definition 1. Given (i) a constant tax and transfer function τ ∗(z); and (ii) an

initial distribution of households across asset and endowment shares f0(ω, z), a real

equilibrium is a collection of variables:

{Vt(a, z), ct(a, z), ft(ω, z), gt(ωat, z), at, bt, rt}t≥0 (20)

such that, for all t ≥ 0:

1. the value function Vt(a, z) solves the HJB (9) and satisfies the boundedness

condition (12)

2. the consumption function is defined by (10)

3. the distribution of asset levels gt(ωat, z) solve the KFE (13)

4. the distribution of household endowment shares ft(ω, z) satisfies (14)

5. the path of government debt bt satisfies the government budget constraint (18)

6. the asset market clears, at = bt

Note that by Walras’ law, asset market clearing implies that the goods market clearing

condition is also satisfied: ∫
j∈[0,1]

cjtdj = 1 for all t ≥ 0.

Price Level and Inflation Determination. Under our assumptions about mon-

etary and fiscal policy, each real equilibrium implies a unique initial price level P0 and

a subsequent unique path of inflation πt. These are determined as follows. Each real

equilibrium contains an initial value of real government debt b0. Since initial nominal

debt B0 is given, the initial price level is determined as

P0 =
B0

b0
.
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The path of inflation is uniquely determined by the equilibrium path of real rates

rt and the nominal rate i∗ which is set by the monetary authority as

πt = i∗ − rt − g.

It follows that uniqueness of uniqueness of a real equilibrium implies uniqueness of

the price level. If there is more than one real equilibrium then there will be more than

one possible path for the price level. But if the real equilibrium is unique, then there

is only one possible path for the price level Pt for t ≥ 0, which is determined by initial

nominal debt and monetary policy. As a result, we focus most of our analysis on the

existence and uniqueness of real equilibria, with the understanding that whenever the

real equilibrium is unique, so too is the price level and inflation.

Monetary Policy Rules. With flexible prices, the equivalence between unique-

ness of real equilibria and uniqueness of the path of prices does not depend on our

assumption of a nominal interest rate peg it = i∗. If the monetary authority instead

follows an instantaneous feedback Taylor Rule of the form

it = i∗ + ϕm(πt − π∗) (21)

then inflation is uniquely determined as

πt =
i∗ − ϕmπ

∗ − rt − g

1− ϕm
.

If the monetary authority follows a lagged feedback Taylor Rule of the form

dit = −θm [it − i∗ − ϕm(πt − π∗)] dt (22)

then initial inflation is determined as π0 = i0 − r0 − g and subsequent inflation is

determined as the unique forward solution to the ordinary differential equation

dπt = −θm [πt − ϕm(πt − π∗) + rt − (g − i∗)] dt− drt.

Depending on parameter configurations, prices and inflation may not remain bounded,

but there is nothing in the equilibrium definition that rules out such paths.
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3 Primary Surpluses s∗ > 0

We start by showing uniqueness of equilibrium when the fiscal authority runs positive

primary surpluses. We use an example to illustrate the different dynamics in the

heterogeneous agent economy compared to its representative agent counterpart.

3.1 Stationary Equilibrium

Household Asset Demand. In a stationary equilibrium, the real rate rt is con-

stant. Under regularity conditions that are well understood, with a constant interest

rate r and transfer function τ ∗(z), the solution to (9) and (13) implies a unique

stationary distribution g (a, z; r).13 We use this result to construct a function a(r)

that maps different interest rates into the aggregate quantity of real assets held by

households in the corresponding stationary distribution,

a (r) :=

∫
a,z

ag(a, z; r)dadz

It is well known that limr→ρ a (r) = ∞. In addition we will assume that the function

a (r) is continuous, differentiable and strictly increasing.14 In Online Appendix C.2

we show that there exists an interest rate r < 0 below which households do not hold

any assets in the stationary distribution, so that a (r) = 0 for all r ≤ r. The blue line

in Figure 1 labelled a (r) is an example of a typical stationary asset demand function.

Government Asset Supply. In a stationary equilibrium, the government budget

constraint defines a steady-state asset supply function b(r). This is obtained by

setting dbt = 0 in (15),

b(r) =
s∗

r
. (23)

Since bt ≥ 0, this supply function takes the shape of a downward-sloping hyperbola

in the positive quadrant as illustrated by the red line labelled b (r) in Figure 1.

Stationary Equilibrium. A stationary equilibrium requires that a(r) = b(r), so

that the asset market clears. Given our assumptions, there is a unique stationary real

equilibrium shown as (b∗, r∗) in Figure 1. The assumption that primary surpluses are

positive s∗ > 0 implies that the stationary equilibrium real rate r∗ is positive.

13See e.g. Bewley (1995), Stokey et al. (1989), and Aiyagari (1994).
14Achdou et al. (2022) show that sufficient conditions for this to be true are γ ≤ 1 and a ≥ 0.
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a(r)

rRA = ρ

r

aRA(r)

b(r)

bRA b∗

r∗

real assets
r

Figure 1: Steady state equilibrium with positive surpluses

The unique stationary equilibrium in the corresponding representative agent econ-

omy is the point (bRA, rRA) in Figure 1. In this economy the household asset demand

curve is perfectly elastic at r = ρ. As is well known, in the heterogeneous agent

economy the real rate is lower and the level of real government debt is higher than in

the representative agent economy.

3.2 Non-Stationary Equilibrium

Because there is a unique stationary real equilibrium, in order to pin down the price

level and inflation it suffices to rule out multiplicity of non-stationary real equilibria.

Before tackling the heterogeneous agent economy, it is useful to recap the argument

in the representative agent economy.

Uniqueness in Representative Agent Economies. In a representative agent

economy, consumption satisfies an Euler equation of the form

dct
ct

=
1

γ
(rt − ρ) dt

In an endowment economy, goods market clearing implies dct = 0 and hence in equi-

librium rt = ρ at all points in time, not just in a stationary equilibrium. Graphically,

this means that the economy lives on the brown horizontal line labelled aRA (r) in

Figure 1 at all points in time. The real government budget constraint implies that

dbt = [ρbt − s∗]dt. It follows that real debt is increasing when it is above steady-

state, and decreasing below steady-state, as illustrated by the arrows in Figure 1.

Paths with increasing debt are ruled out as equilibria by showing that they violate a
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household transversality condition. Paths in which debt is decreasing are ruled out

since they violate the household’s borrowing constraint in finite time. This argu-

ment is formalized in Online Appendix A. It follows that the stationary equilibrium

is the unique real equilibrium and the initial price level and subsequent inflation are

uniquely determined:

P0 =
B0

bRA
and πRAt = i∗ − ρ− g

Equilibrium paths display an initial jump in the price level at t = 0, and a constant

inflation rate equal to steady-state inflation for t > 0.

Uniqueness in Representative Agent Economies with Bonds-In-Utility. The

heterogeneous agent economy differs from the representative agent economy in part

because the steady-state asset demand function is not perfectly elastic. In Online

Appendix B we describe a simple representative agent economy in which households

directly generate utility by holding real government debt. This economy features a

steady-state asset demand function aBIU (r) that has the same qualitative properties

as a (r). In this economy, all equilibria lie on the one-dimensional manifold aBIU (r)

at all points in time, and away from steady-state the dynamics of government debt

are unstable. A transversality condition and borrowing constraint rule out explosive

paths in either direction as equilibria and hence the steady-state equilibrium is the

unique equilibrium. The initial price level and subsequent inflation are uniquely de-

termined. With positive primary surpluses, the difference between this economy and

the standard representative agent economy is that the real interest rate is endoge-

nous and depends on the level of surpluses. See Online Appendix B.3 for a formal

argument.

State-Space Representation for Heterogeneous Agent Economy. Establish-

ing that there is no multiplicity of non-stationary equilibria in the heterogeneous agent

economy is more difficult than in the representative agent bonds-in-utility economy

because the equilibria do not lie on a one-dimensional manifold. The aggregate state

for the heterogeneous agent economy consists of the household asset and endowment

distribution gt(a, z).
15 It is useful to partition this distribution into two components,

15The absence of the interest rate rt from the aggregate state is not immediately obvious. However,
as we verify below, in equilibrium it is implied by the joint distribution gt(a, z). In our quantitative
analysis, we consider unanticipated time-varying shocks to various exogenous parameters. In these
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which we denote by Ωt := {ft(ω, z), bt}

(i) ft(ω, z): the joint distribution of household asset shares and endowment shares

(ii) bt: the level of real government debt.

The reason for partitioning the aggregate state in this way is that the two components

have different dynamic properties. The distribution ft(ω, z) is backward-looking and

cannot jump. The level of real debt is a jump variable. It can jump because different

values of the initial price level P0 revalue the outstanding stock of nominal bonds

B0. Partitioning in this way makes it clear that although the household distribution

g0(a, z) can jump, it can only jump along a single dimension such that the relative

wealth holdings of each household remains unchanged. Using this state variable, we

can write the consumption function ct(a, z) as c(a, z,Ωt), where dependence on time

is completely subsumed in the aggregate state.

Roadmap. Our discussion of uniqueness involves two steps. First, we show that

any paths for bt that diverge in either direction are not consistent with equilibrium

because they involve eventual violation of either the borrowing constraint or a nec-

essary household transversality condition. Second, we argue that the dynamics of Ωt

around the unique stationary equilibrium are locally saddle-path stable. Given an ini-

tial distribution f0(ω, z) in the vicinity of f ∗(ω, z), saddle-path stability implies that

there is a unique initial value for the jump variable b0 and unique subsequent paths

of the aggregate state Ωt such that the economy converges to Ω∗ = {f ∗(ω, z), b∗}.16

Ruling Out Explosive Equilibria. In Online Appendix C.3, we show that all

paths of government debt bt that grow at rate rt < ρ imply eventual violation of the

following household transversality condition:

lim
T→∞

Ejt
[
e−ρT cT (ajT , zjT )

−γajT
]
≤ 0. (24)

cases, the state space Ωt needs to be expanded to include the law of motion for these exogenous
driving processes.

16We must also rule out the possibility of non-stationary equilibria that remain bounded away
from the stationary steady-state and involve cycles or similar dynamics. Although we cannot prove
that no such equilibria exist, we have not encountered any numerically.
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and hence cannot be part of aequilibrium.17 Sufficient conditions for the equilibrium

interest rate rt in the heterogeneous agent economy to be below the discount rate ρ

for all t ≥ 0 are established in Not For Publication Appendix G.

Useful Characterization of Equilibrium Real Rate. In Online Appendix C.1

we derive expressions for expected consumption growth Et [dcjt] for constrained and

unconstrained households. Here we use the short-hand notation cjt := c(ajt, zjt,Ωt)

to denote the consumption of household j at time t. By aggregating these expressions

across households, applying the law of iterated expectations, and imposing market

clearing we derive the following relationship between the real rate and the aggregate

state Ωt,

0 =
Cut
γ
(rt − ρ)︸ ︷︷ ︸

intertemporal substitution

+
Cut
γ
Ẽut

[∑
z′

λzj ,z′

(
c (ωj, z

′,Ωt)

cjt

)−γ
]

︸ ︷︷ ︸
precautionary motive

+Et

[∑
z′

λzjz′ {c(ωj, z′,Ωt)− cjt}

]
︸ ︷︷ ︸

intertemporal smoothing

(25)

The expectation operator Ẽut is a consumption-weighted mean across the set of uncon-

strained households, and Cut is the total consumption of unconstrained agents. Not

For Publication Appendix F contains a full derivation of this relationship.18

Equation (25) can be interpreted as balancing three forces driving changes in

aggregate consumption that must net out to zero in an endowment economy. The

first term is an intertemporal substitution motive for saving. The second term is the

average precautionary savings motive. The presence of Cut captures the fact that this

saving motive is only active for unconstrained households. The final term reflects

an intertemporal motive for smoothing income shocks. In equilibrium, the interest

rate is set so that the negative intertemporal substitution motive exactly offsets the

combined effects of the precautionary saving and intertemporal smoothing motives.19

Equation (25) also confirms that the real rate is not required as a separate com-

ponent of the aggregate state since that equation implicitly defines a time-invariant

17Establishing the transversality condition (24) as a necessary condition for household optimality
is non-trivial. Kamihigashi (2001) shows that it is necessary in an analogous deterministic economy.
Kamihigashi (2003) shows necessity in a discrete time stochastic economy.

18Not For Publication Appendix G contains the analogous formula for the real rate functional
when idiosyncratic endowments follow a diffusion process.

19In the special case with quadratic utility, no borrowing constraints (hence, no precautionary
saving) and rt = ρ, equation (25) states that consumption is a martingale.
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functional from Ωt to rt that holds at all times in equilibrium:

rt = r [Ωt] . (26)

Local Saddle Path Stability. We derive the dynamics of the the aggregate state

Ωt by expressing the Kolmogorov Forward Equation (13) in terms of asset shares, and

substituting the real rate functional (25) into the government budget constraint (18):

∂tft(ω, z) = −∂ω
[
ft(ω, z)

1

bt
{z − τ ∗(z)− c(ωbt, z,Ωt) + s∗ω}

]
(27)

−ft(ω, z)
∑
z′ ̸=z

λzz′ +
∑
z′ ̸=z

λz′zft(ω, z
′)

dbt
dt

= r [Ωt] bt − s∗ (28)

Since this system is comprised of a one-dimensional jump component bt and an infinite

dimensional backward looking component ft(ω, z), local saddle-path stability requires

that, around the steady-state, this PDE system has one positive eigenvalue and non-

positive remaining eigenvalues.

Discretized Economy. Although we are not able to prove saddle-path stability

for the full continuum economy, we have found the system to be saddle path stable

in our numerical explorations of discretized versions of this economy. Here we offer

some intuition for local saddle-path stability from this discretized economy.

We consider a discrete approximation to f(ω, z) on a grid for relative asset shares

of size Nω, which we denote by the N × 1 vector f where N = Nω × Nz. In Online

Appendix C.4 we show that the finite difference approximation the PDE system (27)

is given by the system of N + 1 ODEs

df

dt
= Aω [ft, bt]

T ft +AT
z ft (29)

db

dt
= r [ft, bt] bt − s∗ (30)

The matrices Aω [ft, bt]
T and AT

z are upwind finite difference approximations to the

two linear operators that comprise the KFE for (ω, z).20

20The transposes reflect the fact that these matrices are constructed by first constructing finite
difference approximations to the adjoint operators in (27).
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The dependence of Aω [ft, bt]
T on the distribution ft and real debt bt arises for

three reasons. First, a change in aggregate wealth bt has a common effect on the

interest earnings at all points in the wealth distribution. This direct effect is reflected

by the bt in the denominator of the top line of (27). Second, a change in aggregate

wealth impacts consumption of all households via a wealth effect. This is reflected

in the bt in the first argument of the consumption function in (27). Finally, there

are further general equilibrium effects on consumption because of future interest rate

dynamics. These are reflected in the dependence of the consumption function on the

aggregate state Ωt in the third argument.

In Online Appendix C.4, we linearize the discretized system (29) around the steady

state (f∗, b∗) and show that the local dynamics are approximately(
df
dt
db
dt

)
≈

(
A∗
ω
T +AT

z ∇bA
T
ω [f

∗, b∗]

0 b∗
{
∂br [f

∗, b∗]−
(
− r∗

b∗

)} )( ft − f∗

bt − b∗

)
(31)

where term ∇bA
T
ω [f

∗, b∗] is the Nω × 1 vector of derivatives of A∗
ω
T with respect to

real debt b.

The approximation in (31) refers to the zero in the bottom left element of the

Jacobian. Our approximation requires this term to be small only relative to the term

in the bottom right element of the Jacobian. This means we require that around

the steady-state, the dynamics of real government debt are more sensitive to changes

in the level of real debt, holding the distribution of asset shares constant, than to

changes in the distribution of asset shares, holding the level of real debt constant.21

In this case, the Jacobian is approximately block triangular, allowing us to sign the

eigenvalues of the full system: A∗
ω
T +Az

T is an irreducible transition rate matrix and

so has a single zero eigenvalue and remaining negative eigenvalues. The sign of the

remaining eigenvalue is given by the sign of ∂br [f
∗, b∗] b∗+r [f∗, b∗]. The first term is the

inverse of the derivative of the steady-state household asset demand curve, multiplied

by the level of steady-state assets. The second term is the steady-state interest rate.

As both terms are positive under constant positive surpluses, the remaining eigenvalue

21This assumption might appear at odds with our substantive messages that emphasize changes
in the distribution of real wealth as a quantitatively important factor in driving inflation and price
level dynamics. However, as our simulations confirm, these are not contradictory: the feedback from
the distribution of shares to the debt dynamics are large enough to be quantitatively meaningful,
but would need to be orders of magnitude larger to alter the qualitative features of the dynamic
system.

19



(a) Representative Agent Economy (b) Heterogeneous Agent Economy

Figure 2: A permanent reduction in surpluses

is strictly positive and the economy saddle-path stable.

3.3 Example: Permanent Reduction in Surpluses

We use a permanent reduction in surpluses as an example to illustrate the saddle-path

dynamics. Consider a fiscal authority that unexpectedly changes the tax function

from τ ∗(z) to τ ∗∗(z) = (1 − ∆s)τ
∗(z) so that primary surpluses decline to s∗∗ =

(1−∆s)s
∗, with ∆s ∈ (0, 1). The new steady-state government bond supply function

is b(r) = s∗∗

r
, which is displayed as a leftward shift of the red line in Figure 2.

First, consider the effects of this change in the representative agent economy. The

initial steady-state equilibrium before the change is indicated by bRA. When the level

of surpluses fall, the economy immediately jumps to the new steady-state equilibrium

at the point labelled bRA
′
. The level of real debt immediately falls to (1 − ∆s)b

RA,

which is achieved by a one-time upward jump in the price level from P0 to
P0

1−∆s
with

no change in either the real interest rate or inflation. The stock of nominal debt is

unchanged, but real surpluses are reduced and thus the price level must jump to lower

the real value of outstanding debt.

In the heterogeneous agent economy, the initial steady-state equilibrium is indi-

cated by the point (b∗, r∗). In contrast to the RA model, a change in the tax and

transfer function induces a shift in the steady-state household asset demand func-

tion for two reasons: (i) it affects disposable income; and (ii) it alters the degree of

risk-sharing in the economy. In this example, the effect is to shift the a(r) curve to

the right. The new steady-state after the change is indicated by the point (b∗∗, r∗∗).
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Unlike in the representative agent economy, the economy does not jump immediately

to the new steady-state. Rather, saddle-path dynamics imply that on impact of the

change there is a one-time jump in the level of real debt to the unique value of b0 that

is consistent with non-explosive dynamics, which then determines a unique r0 through

the real rate functional (25). This is indicated by the leftward jump in Figure 2b. The

initial jump is achieved by a rise in the price level that devalues all households’ wealth

proportionately.22 This shift in the wealth distribution then induces trading among

households as the interest rate falls smoothly to its new steady-state level. Without

any change in monetary policy, inflation rises smoothly during this transition until

it reaches its new steady-state level, which is higher than in the original steady state

by the amount r∗∗ − r∗.

4 Primary Deficits s∗ < 0

We now assume that the fiscal authority runs a constant primary deficit. We first

show that there are zero or two steady-state equilibria, depending on the level of

deficits. We then characterize the out of steady-state dynamics and non-stationary

real equilibria. We end this section with a discussion of alternative ways to restore

uniqueness of a saddle-path stable equilibrium and hence a unique path for prices.23

4.1 Stationary Equilibria

The household asset demand a(r) function is qualitatively unchanged with s∗ < 0.

However, the steady-states of the government budget constraint, b(r) = s∗/r is an

upward-sloping hyperbola for bt ≥ 0, as depicted in Figure 3. Note that with s∗ < 0,

any steady-state equilibria must have a real rate that is below the growth rate of the

economy r∗ < 0. From Figure 3, it is immediate that if such a steady-state equilibrium

exists, then generically there will be two steady-state equilibria, as indicated by the

two intersections of the asset supply and demand curves.24 For a given nominal

22In general, the initial jump in the price level may undershoot or overshoot its long-run value
depending on the nature of the transfer function.

23In Online Appendix C.5 we consider the case where s∗=0. Like in the case with s∗ > 0, there
is a unique equilibrium with a finite price level and the path of prices is uniquely determined. The
steady-state real interest rate and real assets are r∗ = 0 and b∗ = a(0), respectively.

24This conclusion follows from the existence of a r such that for all rt < r, households do not save,
meaning that the household steady-state asset demand curve intersects the b = 0 axis at a finite
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b∗L

r∗H
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r∗L

b∗H

No steady states if
deficits too large

b
′
(r)

high deficits

r

Figure 3: Maximum steady-state deficits

interest rate, the top equilibrium (b∗H , r
∗
H) has a higher level of real debt, higher real

interest rate and lower inflation than the bottom equilibrium (b∗L, r
∗
L). In Online

Appendix C.6 we show that the high interest rate steady-state Pareto dominates the

low interest rate one by reducing the volatility of individual consumption growth.

Maximum Deficits. There exists a maximum level of deficits that is consistent

with the existence of a stationary equilibrium where the price level is finite and

government debt is valued. As the level of deficits increases, the government asset

supply curve shifts downward to the right, as illustrated in Figure 3. The maximum

deficit is attained when the asset supply and demand curves are tangent to each

other, which occurs at the point where the interest-rate elasticity of the steady-state

household asset demand curve is equal to unity: a′(r)r/a(r) = −1.

This condition reflects the fact that the maximum attainable level of deficits de-

pends on the strength of households’ desire to hold assets for precautionary reasons.

It follows that a change in the nature of after-tax idiosyncratic endowment risk can

shift the asset demand curve a(r) and hence the maximum deficit. Any reduction in

s∗ must be implemented via a change in the function τ ∗(z). Depending on the change

in progressivity, the maximum deficit may increase or decrease through a shift in

a(r). In general, a change in the tax function that reduces the amount of uninsured

risk will lower the maximum attainable deficit because households have less incentive

to accumulate precautionary savings.25 In Section 5 we use our calibrated model to

interest rate r. This discussion maintains the assumptions outlined in Section 3.1 so that a(r) is
monotonically increasing. Without these assumptions, there is generically an even number of steady
states.

25Amol and Luttmer (2022) also emphasize that fiscal space depends on the overall level of risk
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illustrate these forces.

Non-uniqueness of Price Level and Inflation. Since there are two steady-state

equilibria with s∗ < 0,standard FTPL arguments for uniqueness of the price level

do not hold. Additional assumptions on fiscal policy must be imposed, or other

modifications made to the economy, in order to uniquely pin down the price level and

inflation. We discuss these possibilities in Section 4.3, but first we characterize the

set of non-stationary equilibria.

4.2 Non-stationary Equilibria

Local Dynamics. We can characterize the local dynamics around each of the two

steady states following the same line of argument as we did for the case with s∗ > 0.

The dynamics obey the same PDE system (27). The arguments we gave for why

the eigenvalues associated with the backward looking component f(ω, z) are all non-

negative remain unchanged. As before, we sign the eigenvalue associated with the

jump variable bt by assuming that – in the vicinity of a steady-state equilibrium –

the effect on government debt dynamics due to general equilibrium feedback from

movements in the distribution are small relative to the overall effect of changes in

interest payments:
dbt
dt

≈ b∗
{
∂br [f

∗, b∗]−
(
r∗

b∗

)}
(32)

The term in braces is the difference between the slopes of the steady-state asset

demand function (∂br[Ω
∗] = (∂ra[r

∗])−1) and the steady-state bond supply function

(− r∗

b∗
= (∂rb[r

∗])−1 ). The eigenvalue associated with government debt bt is therefore

positive at the top steady-state, where the asset demand function crosses the asset

supply function from below, and is negative at the bottom steady-state, where the

asset demand function crosses the asset supply function from above. Hence the local

dynamics around the top steady-state are saddle-path stable, similarly to the unique

steady-state in the case with surpluses. The dynamics around the bottom steady-state

are locally stable. Simulations confirm these properties.

Figure 4 illustrates these dynamics. For a given initial distribution f0(ω, z) ̸=
f ∗(ω, z), there is a unique equilibrium converging to (b∗H , r

∗
H) and a continuum of

equilibria converging to (b∗L, r
∗
L), indexed by the initial level of real debt b0. Conse-

in an economy in which households face idiosyncratic shocks to their returns on capital.
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Figure 4: Non-stationary equilibria with deficits. For a given f0(ω, z) ̸= f ∗(ω, z),
there are a continuum of equilibria indexed by initial real government debt.

quently, the price level and inflation are not pinned down without additional assump-

tions that rule out almost all of these equilibria. Because it is the top equilibrium

that is saddle-path stable, there is a lower bound on the initial price level that is

consistent with equilibrium. This minimum initial price level is given by P0 = B0

b0
,

where b0 is the unique initial value of real debt for which the economy converges to

the top saddle-path stable equilibrium.

Exact Characterization in a Bonds-In-Utility Economy. In Online Appendix

B.4 we show that the representative agent economy with bonds in the utility function

has qualitative steady-state properties that are the same as in the heterogeneous

agent economy. In that economy, aBIU [r] can be derived in closed form, and we can

fully characterize the global dynamics: the top steady-state is unstable, the bottom

steady-state is stable and there is a lower bound on the initial price level.

4.3 Options for Price Level Determination

Multiplicity of equilibria poses a challenge for quantitative work. We show that there

are several ways to eliminate the locally stable steady-state and achieve uniqueness.

First, through certain fiscal policy rules. Second, by introducing a foreign sector with

relatively inelastic demand for domestic government debt. Lastly, through a form of

long-run inflation anchoring.

Real Debt Reaction Rule. Until now we have assumed a fiscal rule that keeps

primary deficits constant. Assume instead that the fiscal authority follows a rule in
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(a) Real debt reaction rule (b) Real interest rate reaction rule

(c) Foreign demand

Figure 5: Alternative approaches to deliver a unique equilibrium with deficits

which primary deficits respond to real debt deviations from the steady-state level b∗:

st = s∗ + ϕb (bt − b∗) . (33)

The steady-state level of deficits is denoted by s∗ < 0. Outside of steady-state,

the fiscal authority varies deficits by changing the tax and transfer function τt(z).

The steady-state government asset supply curve is given by r = ϕb +
s∗−ϕbb∗

b
. If

ϕb < r∗ < 0, then for b > 0, this is a downward sloping curve that intersects the

household asset demand curve only once, as illustrated in Figure 5a.26 There exists

a unique steady-state equilibrium which is saddle-path stable and hence the initial

price level and subsequent inflation are uniquely determined. Online Appendix C.7

contains details. Note that the condition ϕb < r∗ implies that when outstanding

26The household asset demand curve will also be affected, since higher levels of debt are associated
with different transfer functions, which may alter the shape of the asset demand curve. In practice
this effect can be made small by changing the level of deficits in an approximately distributional
neutral way.
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debt falls below its steady-state level, the government responds by cutting primary

deficits. This reaction has a destabilizing effect on the debt accumulation process,

which eliminates the bottom (stable) steady-state (b∗L, r
∗
H).

27

Real Rate Reaction Rule. An alternative fiscal rule that also eliminates the

stable steady-state equilibria is one in which primary deficits respond to deviations

of the equilibrium real rate from its steady state,

st = s∗ + ϕr (rt − r∗) . (34)

In Online Appendix C.8, we show that a sufficient condition to eliminate the stable

steady-state is ϕr <
s∗

r∗−a−1(0)
< 0. Figure 5b illustrates this case. When the real

rate falls below its steady-state value, the fiscal authority cuts primary deficits. This

response has a destabilizing effect that eliminates the bottom stable steady-state.

Interest Payment Reaction Rule. We also consider a fiscal rule in which primary

surpluses respond to deviations of real interest payments from their steady state level:

st = s∗ + ϕs (rtbt − s∗) . (35)

In Online Appendix C.9 we show that the steady-state equilibria are unchanged from

the baseline (ϕs = 0). With an “active” rule (ϕs < 1), the stability properties of the

two steady-states are also unchanged. However, with a “passive” fiscal rule (ϕs > 1),

the stability properties of the two steady-states are reversed: the top steady-state is

locally stable and the bottom one is saddle-path stable.

Inelastic Foreign Demand. If there is additional demand for government debt

that is sufficiently interest-inelastic, for example from a foreign sector, then the bot-

tom steady-state can be eliminated and uniqueness restored.

Denote the foreign demand for government debt as a function of the domestic real

interest rate as d(r). The asset market clearing condition becomes a(r)+d(r) = b(r).

To clearly see the effect of additional foreign demand, assume that it is perfectly

27This rule has the somewhat unappealing feature that when government debt rises above its
steady-state level, the government responds by running even larger primary deficits. However, this
property is not important for uniqueness; the role of the rule is to eliminate the stable equilibrium
with low levels of government debt. Upward explosive dynamics are ruled out even with a constant
deficit policy as explained in Section 3. For example an asymmetric policy, in which primary deficits
respond only to reductions in government debt would suffice for uniqueness.
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inelastic, so that d(r) = bf . The overall asset demand curve is shifted to the right and

the bottom steady-state disappears, as illustrated in Figure 5c. In Online Appendix

D we offer a microfoundation based on a representative agent foreign sector that has

bonds-in-utility preferences. We show that an interest rate elasticity of demand below

one is sufficient to ensure that the two curves intersect only once.

Long-Run Inflation Anchoring. The previous approaches to delivering a unique

path of prices work by making assumptions that eliminate the high inflation stable

steady-state, leaving only the low inflation saddle-path stable steady state. An alter-

native route to uniqueness is to instead eliminate all dynamic equilibria that lead to

the high inflation steady-state, leaving only the unique equilibrium leading to the low

inflation steady-state. In Not For Publication Appendix H, we show that a central

bank that coordinates long-run inflation expectations can successfully pin down the

inflation and the price level in the short-run under a constant deficit fiscal policy rule.

5 Quantitative Exercises with Persistent Deficits

In this section we describe various quantitative experiments for a calibrated version

of the model with persistent deficits in order to illustrate the role of redistribution

and precautionary saving in shaping price level dynamics.28

5.1 Model Extensions

We incorporate the following two extensions of the baseline model.

Extension I: Unsecured Household Credit. We allow for a non-zero borrowing

limit. This permits nominal positions to be negative, thereby allowing some house-

holds to experience a positive wealth effect from an unanticipated rise in the price

level, as in Doepke and Schneider (2006) and Auclert (2019). We assume that house-

holds can borrow up to a fixed limit that is denominated in real terms. We interpret

it as unsecured borrowing, such as credit card debt, and impose an exogenous wedge

between borrowing and saving rates. See Online Appendix E.1 for details.

28Our economy is a flexible price, endowment economy in continuous time. In reality, the price
level does not jump. Rather, the initial bursts of inflation from these shocks are drawn out over
a period of time. Despite this simplification, the general forces at work are informative about the
two-way feedback between the equilibrium wealth distribution and movements in the price level.
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Parameter Value Target

Preferences
γ Inverse EIS 1
ρ Discount rate 2.8% p.a. debt-to-annual GDP ratio of 1.10

Income Process
g Real output growth 2.0% p.a. average growth rate post-war
λ Arrival rate of earnings shocks 1.0 p.a.
σ St. Dev. of log quarterly earnings 1.2

Household Borrowing
a Borrowing limit $15, 000 70% of quarterly household earnings
rb − r Borrowing wedge 16% p.a. average rate on credit card debt

Tax and Transfers: τ(z) = τ0 − τ1 ∗ z
τ1 Proportional tax rate 30% personal taxes / labor income
τ0 Lump sum transfer 33.3% of GDP deficit: s∗ = −3.3%

Government Debt
δ Maturity rate of government debt 20% p.a. average duration of 5 years

Monetary Policy
i Nominal rate 1.5% average Federal Fund Rate

Table 1: Calibrated parameter values and targets.

Extension II: Long-Term Debt. We assume that the government issues long-

term debt with a constant maturity rate. The switch to long-term debt has no

effect on the preceding analysis of price level determination. However, as shown by

Sims (2011) and Cochrane (2018), debt duration plays a key role in the dynamics of

inflation after unanticipated changes in the nominal interest rate. This mechanism

surfaces in some of our experiments where we explore monetary policy rules beyond

an interest rate peg. Online Appendix E.2 describes the model with long-term debt.

5.2 Parameterization

Preferences. We set the elasticity of inter-temporal substitution γ to 1 so that

households have log utility. We choose the discount rate ρ to match an annual debt-

to-GDP ratio of 1.10 in the low inflation steady state. This target, which corresponds

to the debt-to-GDP ratio in US data for the years leading up to the pandemic (2014-

2019), implies a calibrated annual discount rate of 2.8%.
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Endowment Process. We assume an annual aggregate real growth rate g of 2%,

which was the US per-capita average over the post-war period.29 Idiosyncratic en-

dowment shares follow an Nz = 5 state process, with switching rates chosen so that

income shocks arrive on average once per year and the endowment process generates

a standard deviation of log quarterly earnings of 1.08, in line with US micro data.30

Household Borrowing. We set the borrowing limit a to $15,000, which is approx-

imately 70% of average quarterly household earnings to match the median credit card

limit for working-age population in the Survey of Consumer Finances (SCF) (Kaplan

and Violante, 2014). We set the wedge between the interest rates on borrowing and

saving to 16% p.a., based on typical interest rates on unsecured credit card debt.31

Because of this exogenous wedge, the real borrowing rate is positive, and the natural

borrowing limit is finite and exceeds the ad-hoc limit.

Tax and Transfer System. The tax and transfer system consists of a lump-sum

transfer and proportional tax,

τ(z) = −τ0 + τ1z.

We set the proportional tax rate τ1 to 30% to match the ratio of personal taxes and

social insurance contributions to total labor income (NIPA Table 2.9) for 2014-2019.

We then set the lump-sum transfer τ0 at 33.3% of aggregate output to generate a

primary deficit s∗ of −3.3% of GDP, the average for the US over that period.32

Government Debt. We assume that 20% of outstanding government debt matures

each year to match a weighted average duration of 5 years (US Treasury). Given our

target debt-to-GDP ratio of 110%, and primary deficit of 3.3%, the implied steady-

state real interest rate equals s∗

B∗ + g = −0.033
1.1

+ 0.02 = −1% p.a.

Monetary Policy. We assume that the central bank pegs the nominal rate at 1.5%

p.a., consistent with the average interest rate target in the years leading up to the

29See Series A939RX0Q048SBEA PC1 from FRED, Federal Reserve Bank of St. Louis, https://fred.

stlouisfed.org.
30See, for example, the Global Repository of Income Dynamics (GRID), https://www.

grid-database.org/.
31See Table Consumer Credit - G19, Federal Reserve Board, https://www.federalreserve.gov/

releases/g19/current/.
32The data sources for debt and deficits are series GFDEGDQ188S and FYFSGDA188S from

FRED.
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Figure 6: Calibrated steady-states and wealth distribution

pandemic. With a real interest rate of −1%, the implied annual inflation rate is 2.5%.

5.3 Properties of Steady States

Figure 6a displays the two stationary equilibria implied by our calibration. In line

with our targets, the low inflation saddle-path stable steady-state has an annual

debt-to-GDP ratio of 110% and an annual inflation rate of 2.5%. The high inflation

steady-state has an annual debt-to-GDP ratio of 17.5%, and an annual inflation rate

of around 19.5%. In what follows, we focus on the low-inflation steady state.

Wealth and MPC Distribution. Figure 6b and Table 2 illustrate that the model

is broadly consistent with the distribution of liquid wealth in the 2019 SCF.33 Ex-

pressed in 2019 dollars, mean and median household wealth in the model are $116, 000

and $40, 000 respectively. 19% of households have negative wealth and 27% of house-

holds have less than $1, 000. These moments were not targeted in our calibration,

which was disciplined by aggregate statistics on national debt.

The average quarterly MPC in the model is around 14%, with the highest MPCs

among the low-income households that either have close to zero wealth and so are

near a kink in their budget constraint, or have substantial negative wealth and so are

close to the borrowing limit.34

33Our definition of liquid wealth includes money market, checkings, savings, and call accounts,
as well as directly held mutual funds, stocks and bonds, minus credit card and uncollateralized
debt. We exclude the top 1% of households in the SCF by liquid wealth because of the well-known
difficulties in matching the right-tail of the wealth distribution in this class of models.

34Not For Publication Appendix J contains additional details on the distributions of wealth and
marginal propensities to consume in the model.
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Table 2

Mean liquid assets Data Model

Mean assets $116, 000 $100, 317
Frac. with a < $0 20.67% 19%
Frac. with a < $1, 000 37% 27%

Note: Moments of the wealth distribution in the model and the data. Monetary values
expressed in 2019 dollars. Data is from the 2019 Survey of Consumer Finances (SCF) with
the top 1% of households by liquid wealth are excluded. See the main text for the definition
of liquid assets in the data.

Maximum Sustainable Deficit. As discussed in Section 4.1, there exists a max-

imum possible level of permanent deficits consistent with existence of an equilibrium

where debt is valued. The size of this maximum deficit depends on whether it is

reached by expanding lump-sum transfers or cutting proportional taxes. Under our

calibration, raising transfers yields a maximum deficit of 4.6% of output, a 39% in-

crease from the baseline steady-state value of 3.3%. Instead, lowering taxes allows

the government to run a maximum deficit of 4.8%, a 45% increase from the baseline.

Lower proportional tax rates are, in general, associated with higher maximum

steady-state deficits because they increase the volatility of disposable earnings. House-

holds therefore bear more uninsured idiosyncratic income risk which raises their over-

all precautionary demand for safe liquid assets. For a given interest rate r, households

are willing to hold more government bonds if they bear more idiosyncratic risk, giving

the government more room to expand its deficit. Graphically, a lower value for τ1

induces an outward shift in the the steady-state household asset demand curve (recall

Figure 3). The same logic, with signs reversed, applies to an expansion of lump-sum

transfers because they reduce the volatility of net earnings.

The role of precautionary saving is quantitatively important. For example, in an

extreme case without proportional taxes (τ1 = 0%), the maximum sustainable deficit

that can be achieved by expanding transfers is 9.5%, almost three times as large as

in our baseline. For similar reasons, when households are prohibited from borrowing,

the maximum sustainable deficit rises to 5.9%. A key lesson from these experiments

is that reforms that loosen credit, make tax and transfer systems more progressive,

or provide more insurance to households reduce future fiscal space available to the

government. These reforms restrict the government’s ability to expand deficits or cut

surpluses, and therefore may constrain its ability to use expansionary fiscal policy to

respond to adverse aggregate shocks.
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Implications for Secular Stagnation. A recent literature argues that the secular

decline of real rates observed in the US and other developed economies is due to rising

income risk and inequality, which has been accelerated by the sharp debt deleveraging

that occurred after the 2008 financial crisis (Auclert and Rognlie, 2018; Eggertsson

et al., 2019; Mian et al., 2021b). The argument is that higher inequality leads to

a redistribution of income from the high-MPC poor to the low-MPC rich, which

increases overall demand for wealth in the household sector. Similarly, more uninsured

income risk or a tighter borrowing limit create a stronger precautionary motive, which

increases demand for government bonds. These forces all manifest as an outward shift

of the household asset demand function a (r). In a conventional economy with positive

rates and permanent surpluses, such outward shifts in household asset demand indeed

leads to a lower steady-state real rate.

However, in an economy with permanent deficits and a negative real rate, these

comparative statics are reversed when the economy starts in the low-inflation steady

state. An outward shift of the household asset demand function a (r) leads to a higher

steady-state real rate. The reason is that in order to finance the same level of deficits

with a higher quantity of debt, a less negative (i.e. higher) real rate is needed. This

observation adds an important qualification to the commonly held view that shifts in

the income distribution, income risk or deleveraging are candidate explanations for

secular stagnation. In Section 5.5, we propose an alternative explanation for secular

stagnation, rooted in the observation that in heterogeneous agent economies with

persistent deficits and r < g, larger primary deficits depress the real rate.

5.4 Fiscal Helicopter Drop

Our first experiment is inspired by the experience of the US and other developed

countries in the wake of the COVID-19 shock. In response to the disruptions caused

by the pandemic, the US issued a large quantity of additional government debt and

distributed much of the proceeds to households. We capture the core features of this

fiscal helicopter drop by simulating an unexpected one-time issuance of nominal debt

equal to 16% of initial outstanding government liabilities (equivalent to the observed

16% rise in the US debt-GDP ratio in 2020), which is distributed as a one-time

lump-sum transfer to households. We consider two versions of this policy: one where

transfers are distributed uniformly and one where transfers are distributed only to
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Figure 7

0 5 10 15 20 25 30

Quarters

-0.02

-0.01

0

0.01

0.02
Real Primary Surplus (SS deviation %GDP)

Targeted

Untargeted

RA

0 5 10 15 20 25 30

Quarters

1.02

1.04

1.06

1.08

1.1

1.12
Real Debt (×GDP)

0 5 10 15 20 25 30

Quarters

-1

0

1

2

3
Real Rate (SS deviation %p.a.)

0 5 10 15 20 25 30

Quarters

1

1.1

1.2

1.3

1.4

1.5
Price Level

0 5 10 15 20 25 30

Quarters

1

1.2

1.4

1.6

1.8

2
Nominal Debt

0 5 10 15 20 25 30

Quarters

-1

0

1

2

3
Inflation (%p.a.)

Note: This figure plots impulse responses to a targeted and untargeted helicopter drop,
aggregated at the quarterly frequency. The helicopter drop is a one-time issuance of 16% of
total government nominal debt outstanding at t = 0. Only households in the bottom 60%
of the wealth distribution receive the issuance in the targeted experiment (dashed red line).
The orange line plots dynamics in the representative agent (RA) model. The dashed black
line plots the initial steady state.

households in the bottom 60% of the wealth distribution, in line with the actual US

experience.

Aggregate Effect of Fiscal Helicopter Drop. The effects of the fiscal helicopter

drop are displayed in Figure 7. Since there are no changes to primary surpluses or

any other structural parameters, the helicopter drop has no permanent real effects:

the household and government nullclines are unchanged, and the economy converges

back to its initial steady-state.

In the representative agent version of this economy, which is shown by the orange

dotted line labelled “RA” in Figure 7, convergence is instantaneous.35 The jump in

the price level exactly offsets the new issuance of nominal debt so that the level of

35The representative agent economy is constructed to have the same steady-state debt-to-GDP
ratio as in the heterogeneous agent economy. However, since the representative agent economy does
not admit a steady-state with persistent deficits, we assume an annual surplus-to-GDP ratio of 3.3%
and an equilibrium real rate of 1%. We adjust the nominal interest rate so that the inflation rate is
the same in the two economies.
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Figure 8
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Note: This figure shows the computed saddle-path dynamics from a one-time issuance of
nominal government debt in (rt, bt) space. The total issuance amounts to 16% of nominal
government debt outstanding at t = 0. The blue dots depict quarterly aggregates.

real debt remains constant and there are no further effects of the shocks.36 However,

n the heterogeneous-agent model, there are transitional dynamics. The computed

saddle-path dynamics associated with this convergence in (rt, bt) space are displayed

in Figure 8. The initial jump in the price level (bottom-left panel of Figure 7) is

about 21%, higher than in the representative agent model, which more than offsets

the 16% rise in nominal debt.

Why does an identical expansion in government debt place more upward pressure

on the price level in the heterogeneous agent economy? The fiscal helicopter drop

entails a redistribution of real wealth from high- to low-wealth households because

the lump-sum transfer is progressive. Since the average MPC is higher among low

wealth households, this redistribution raises the economy-wide desire to consume.

With a constant aggregate endowment, the real interest rate must rise to restore

goods market clearing. The higher (i.e. less negative) real interest payments require

a reduction in total real government debt outstanding. Since nominal debt is fixed

after the helicopter drop, the price level must then increase further. An alternative

interpretation is simply that the additional spending pressure from redistribution,

beyond the aggregate wealth effect, places more upward pressure on nominal prices

than in the representative agent economy where only the wealth effect is present.

Decomposition of Fiscal Helicopter Drop. In addition to the the direct re-

distributive impact of the fiscal helicopter drop, there are two additional indirect

36The initial price jump in Figure 7 is slightly more than 16% because in this and other figures,
we plot impulse response functions aggregated to a quarterly frequency.
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Figure 9

Note: This figure decomposes the effect of the helicopter drop on consumption into its
general equilibrium sub-components. The left panel depicts how each sub-component affects
aggregate consumption over time in isolation. The right panel depicts the effect of each sub-
component on initial consumption across the wealth distribution. The dashed black line on
the right panel delineates households that experienced initial consumption gains and losses
as a result of the helicopter drop in 2019 US dollars.

general equilibrium channels at play that shape the subsequent dynamics of the real

rate and inflation. First, the upward jump in the price level redistributes wealth

from savers to borrowers, and dilutes the real savings for households with a positive

net nominal position. Second, the resulting rise in the real rate leads households to

postpone consumption. The left panel in Figure 9 displays the dynamic effects of

each of these channels on aggregate consumption. The helicopter drop itself raises

consumption, while the higher price level lowers consumption. These effects diminish

as the economy returns to steady-state. The higher real interest rate leads households

to delay consumption, which is reflected by the initially lower but subsequently higher

consumption in the green dotted line in Figure 9.

The aggregate decomposition masks substantial heterogeneity in the effect of these

channels across households. The right panel of Figure 9 shows the contribution of

each channel to the change in consumption on impact along the wealth distribu-

tion. Low-wealth households increase consumption substantially, predominantly due

to their higher MPCs out of the direct helicopter drop at the steady-state price level.

In addition, the jump in the price level induces households with negative wealth to
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increase their consumption, because it lowers the real value of their debt. For house-

holds with positive wealth, the higher price level reduces their consumption because

the real value of their nominal savings is curtailed. The higher real interest rate

weakens consumption for all households because of an intertemporal motive, except

for households on the borrowing constraint. The dashed black line delineates the

winners and losers of this experiment in terms of 2019 US dollars. Households with

assets lower than $51, 400, which account for 55% of the population in our calibrated

economy, gain from the helicopter drop.

Targeted vs Untargeted Fiscal Helicopter Drop. Figure 7 also shows that

initial increase in the price level is even larger when the the helicopter drop is targeted

towards poorer households. Compared to the untargeted case, the real interest rate

rises by 1 additional percentage point on impact and, as a result, the price level

jumps by an additional 4 percentage points (to 25%). In both the untargeted and

targeted cases, the fiscal helicopter drop has a permanent effect on the price level and

nominal government debt, but the inflationary effects are temporary. The saddle-

path dynamics imply that both the real interest rate and the inflation rate return to

their initial levels. In these experiments, the different price level responses between

the heterogeneous agent and representative agent economies are mostly in terms of

timing. The higher initial rise in prices in the heterogeneous agent economy is followed

by lower inflation, and the long-run cumulative increase in the price level is the same

in the two economies.

Fiscal Helicopter Drop Under Different Surplus Reaction Rules. To justify

focusing attention on the saddle-path equilibrium we are implicitly appealing to long-

run inflation anchoring. As discussed in Section 4.3, surplus reaction rules are an

alternative route to uniqueness. Figure 10 shows that the price level, real rate and

inflation dynamics from the fiscal helicopter drop are not sensitive to using either of

the two classes of surplus reaction rules in equations (33) and (34) that guarantee a

unique equilibrium.

However, the two rules differ in the direction that primary deficits respond to

the fiscal helicopter drop. Under the real debt reaction rule (33), the downward

revaluation of real debt from the initial burst of inflation leads the fiscal authority

to cut deficits following the helicopter drop. Under the real rate reaction rule, the
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Figure 10
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Note: Impulse responses to targeted fiscal helicopter drop under alternative fiscal rules. The
dotted orange line corresponds to the “real debt rule” of equation equations (33) and the
dashed red line corresponds to the “real rate rule” in equation (34) with parameter values
of ϕb = −0.5 and ϕr = −2, respectively. The dashed black line plots the initial steady state.

higher real interest rate leads to a temporary increase in primary deficits.37

Fiscal Helicopter Drop Under Different Monetary Responses. Throughout

our previous simulations we have assumed that the central bank holds the nominal

rate constant at 1.5% in response to the helicopter drop. Figure 11 reports results

from two alternative experiments in which nominal rates are lowered at the same

time as the fiscal expansion, like was done by central banks around the world in

2020. The dotted orange line labelled “Taylor rule” shows the effects of following

a lagged Taylor rule as in equation (22), with a feedback parameter θm = 1 and

a coefficient on inflation ϕm = 0.5. The dashed red line labelled “sharp rate cut”

shows the implication of an even more powerful monetary accommodation of the fiscal

expansion, corresponding to an immediate cut in the short-term interest rate all the

way to zero, followed by a gradual normalization after 9 quarters. For comparison,

the blue line labelled “baseline” reproduces the dynamics holding the nominal rate

constant.

37Cochrane (2023) argues that following an expansion in nominal debt, a reduction in primary
deficits is more in line with the historical record for the U.S. However, Jacobson et al. (2023)
discuss an important historical example in which new debt was issued with the explicit intention of
generating inflation by committing to not raise future surpluses to repay the debt.
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Figure 11
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Note: Impulse response to targeted fiscal helicopter drop under different monetary policy
responses. The dotted orange line corresponds to the Taylor rule in equation (22) with
θm = 1 and ϕm = 0.5. The dashed red line is a temporary cut of nominal rates all the way
to the zero lower bound. The dashed black line plots the initial steady state.

Monetary policy is a crucial driver of nominal aggregates. The behavior of long-

term government bond prices is central to these dynamics. As explained in Sims

(2011) and Cochrane (2018), a lower short-term nominal rate leads, through the yield

curve, to a higher price of long-term government bonds. Thus, the overall price

level must rise by a larger amount to achieve the same-size drop in the real value of

outstanding government debt. Figure 11 shows that looser monetary policy causes an

additional 4 to 6 percentage point increase in the price level upon impact, relative to

the baseline with a nominal rate peg. The strength of this force is determined by the

average duration of debt: the longer the duration, the bigger the initial jump in the

price level. Different jumps in the price level, in turn, lead to different dynamics for

real government debt and real interest rates through their effect on the real wealth

distribution. However, we have found the effect on real variables to be quantitatively

very similar across the three monetary specifications, provided that it is higher-wealth

households that hold assets of longer duration.38

38If higher wealth households have longer duration portfolios, an unanticipated increase in mon-
etary policy leads to larger capital losses for high-wealth households. However for moderate move-
ments in the nominal rate, the relatively low MPCs of these households lead to small movements in
the real rate. The assumption that high-wealth households hold relatively higher duration assets is
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Figure 12
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Note: Impulse response to a permanent expansion in primary deficits. The dotted orange
line shows the effects of a reduction in surplus in the Representative Agent model. The
blue line labelled “Lump Sum” illustrates the dynamics following an expansion of lump
sum transfers. The dashed red line labelled “Tax Rate” plots dynamics following a tax cut.
The orange line plots dynamics in the representative agent (RA) model. The dashed black
line plots the initial steady state.

5.5 Permanent Deficit Expansion

Figure 12 displays impulse responses to a permanent deficit expansion from 3.3%

to 4% of GDP. We consider two alternative policies for achieving a higher level of

deficits. The solid blue line labeled “Lump-Sum” keeps the tax rate the same and

raises the lump-sum transfer. The dashed red line labeled “Tax Rate” reduces the

proportional tax rate, while keeping lump-sum transfers at their initial level.

As was shown in Figure 3, a permanent increase in deficits shifts the steady-

state government nullcline downwards and to the right. Starting from the high real

rate, low inflation steady-state, the long-run impact of the deficit expansion is to

permanently lower both the real rate and the real value of government debt. These

effects can be seen in the top row of Figure 12. The reduction in the value of real debt

is achieved through a jump in the price level. In addition, because monetary policy

does not respond, the lower real-rate translates into a permanently higher inflation

rate. To prevent the permanent increase in deficits from leading to permanently

consistent with empirical evidence. See Doepke and Schneider (2006); Greenwald et al. (2021).
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higher inflation, the central bank would need to track the fall in the real rate by

decreasing its nominal rate target.

Hence in the heterogeneous agent economy with deficits and negative real rates, a

secular increase in primary deficits can account for a secular decline in real rates, i.e.

secular stagnation. The fact that permanently higher deficits result in a permanently

lower real rate and higher inflation is a distinguishing feature of the heterogeneous

agent economy relative to the representative agent economy, in which a permanent

increase in deficits has no impact on real rates or inflation.

These effects are all more pronounced when deficits are increased by raising lump-

sum transfers than by lowering the proportional tax rate. The reason is that raising

lump-sum transfers lowers the amount of uninsured idiosyncratic risk, thereby weak-

ening the overall precautionary motive in the economy, while lowering proportional

taxes raises the overall precautionary motive. Graphically, these differences manifest

as different shifts in the household asset demand curve a(r).

5.6 Additional Quantitative Results

Inflationary Effects of Redistributive Wealth Taxes. In order to emphasize

the inflationary effects that arise from redistribution, Not For Publication Appendix

K considers purely redistributive shocks: one-time wealth taxes levied on the top 10%

of the wealth distribution, the proceeds of which are redistributed lump-sum to the

bottom 60%. Although these shocks do not entail any new issuance of government

debt or any change in primary deficits, they do cause a prolonged period of inflation.

Endogenous Output. Not For Publication Appendix L studies a permanent change

in primary deficits in an economy where households make a labor-leisure choice with

endogenous output. This extension serves to demonstrate that none of the qualitative

forces relating heterogeneity and precautionary savings to prices and inflation that

we have emphasized depend on an endowment economy per se.

6 Conclusions

We extend the fiscal theory of the price level to a heterogeneous-agent incomplete-

market economy with flexible prices. In contrast to its representative agent coun-

terpart, this model can be used to study an environment in which the government
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runs persistent deficits and the real rate is below the aggregate growth rate of the

economy. This configuration is a more accurate representation of the current state of

affairs in many developed economies.

After showing that this model generically has two steady-states, we proposed a

number of ways to obtain uniqueness for price level and inflation dynamics. Armed

with uniqueness, we performed experiments that illustrate the forces at work in our

model. The feature of our economy that accounts for different dynamics relative

to its representative agent counterpart is the two-way feedback between price-level

dynamics on the one hand, and redistribution and precautionary saving on the other.

Redistribution and precautionary saving are also key determinants of the maximum

deficit the economy can permanently sustain.

In on-going work we are extending this framework in two directions. The first

is to include nominal rigidities, which gives rise to smoother price level dynamics.

It also offers us the possibility to quantitatively confront the FTPL with the joint

dynamics of inflation and output observed in the data, along the lines of what Bianchi

et al. (2023) did in a representative agent model. The second is to extend our model

to a two-asset economy with both low return nominal government bonds, and higher

return real productive assets. Incorporating a two-asset household sector as in Kaplan

et al. (2018) opens the door to a quantitative framework with a richer characterization

of the possible assets through which households can save.
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Online Appendix

A Representative Agent Economy

A.1 RA: Environment

Notation closely follows that of the main text. There exists a representative household

that chooses real consumption flows c̃jt to maximize

∫
e−ρ̃t

c̃1−γjt

1− γ
dt (A.1)

Initial nominal assets A0 are given. The household faces a flow budget constraint

dAt = [itAt + (1− τt)Ptyt − Ptc̃t]dt (A.2)

subject to the borrowing constraint At ≥ 0, where τt is a path of taxes set by the

government. We may express the budget constraint in real de-trended terms as

dat = [rtat + (1− τt)− ct]dt (A.3)

where the real rate is defined as rt := it − πt − g. Government debt dynamics follow

dbt = [rtbt − τt]dt (A.4)

We also impose the commonly maintained assumption in the fiscal theory of the price

level that the government can borrow, but not lend: bt ≥ 0.

Household Optimality. It is easy to show that the solution to the representative

household problem yields the Euler equation

ρ− rt = −γ 1

ct(at)

dct(at)

dt
(A.5)

together with the household’s transversality condition

lim
t→∞

e−ρtc−γat ≤ 0 (A.6)

Monetary Policy. We allow for arbitrary monetary policy rules it, but assume

that they lead to well-defined paths for inflation given real rates rt (see Section 2.3).
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A.2 RA: Equilibrium Definition

We now define a real equilibrium under the assumption that the price level Pt is

differentiable for all t > 0.

Definition 2. A real equilibrium is a collection of variables {ct, at, bt, rt}t≥0 such that:

1. For all t > 0, ct satisfies the Euler equation (A.5) and transversality condition

(A.6).

2. For all t > 0, at evolves according to the budget constraint (A.3).

3. For all t > 0, bt evolves according to the government budget constraint (A.4).

4. For all t ≥ 0, markets clear: at = bt.

Note that by Walras’ Law, ct = 1 for all t ≥ 0 so that the goods market clears.

A.3 RA: Uniqueness With Constant Surpluses

Next, we show that a real unique equilibrium exists whenever τ = τ ∗ > 0, so that

the government is running constant surpluses. First, note that the Euler equation

(A.5) along with market clearing for output ct = 1 implies that rt = ρ for all t ≥ 0.

Integrating the government budget constraint forwards then yields (A.4):

b0 = lim
T→∞

[∫ T

0

e−ρtτ ∗dt+ e−ρT bT

]
(A.7)

By transversality (A.6) and market clearing, the latter term must be non-positive.

Moreover, it cannot be negative as this would violate the non-negativity constraint

on household assets and/or the assumption that the government cannot be a lender.

Hence, it must be zero. But this then implies that

b0 = lim
T→∞

[∫ T

0

e−ρtτ ∗dt

]
=
τ ∗

ρ
(A.8)

so b0 is well-defined and strictly positive for any level of initial nominal assets B0.

The dynamics for real debt {bt}t>0 are then pinned down by the government budget

constraint (A.4). This proves the existence of a unique real equilibrium.

Given an initial level of nominal debt B0, uniqueness of the real equilibrium implies

uniqueness of the initial price level P0. Subsequent inflation is uniquely pinned down

by rt = ρ, and a monetary policy rule which sets the path for the nominal rate it.
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The Case of Deficits. The analysis above requires that the present discounted

value in (A.8) be finite and positive. Hence, running persistent deficits cannot be

an admissible equilibrium under the assumption that (i) households face borrowing

constraints or (ii) that aggregate government debt must be non-negative.

B Representative Agent with Bonds-In-Utility

B.1 RA-BIU: Environment

Our notation follows closely that of the main text. Time is continuous and indexed

by t. The economy is populated by a representative agent that derives utility from

consumption streams ct and real asset holdings at according to:∫
e−ρt

(
c1−γt

1− γ
+ ζ ln(at + a)

)
dt (B.1)

where ρ > 0 denotes the household’s discount rate, and ζ, a are positive constants.

Our assumption that real assets enter utility in a logarithmic fashion is inessential

to the main results. However, logarithmic utility will allow us to characterize the

steady-states of the economy in closed-form.

As derived in Section A.1 at all points in time in which the price level is differen-

tiable, the household budget constraint can be written in real terms as follows:

dat = [rtat + (1− τt)yt − ct] dt (B.2)

where rt = it − πt denotes the real interest rate on bonds. The government budget

constraint can similarly be written in real terms as:

dbt = [rtbt − τtyt]dt (B.3)

We also impose the commonly maintained assumption in the fiscal theory of the price

level that the government can borrow, but not lend: bt ≥ 0.39 To simplify the exposi-

tion, in this section only, we assume zero growth. Positive growth is straightforward

to incorporate by letting ζ grow over time at the appropriate rate.

39As explained in the context of the RA model of Section A, this can also be rationalized through
a borrowing constraint on the household side.
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Household Optimality. The representative household takes the future sequence of

real rates rt and output yt as given, and chooses consumption and real asset holdings

optimally subject to its budget constraint (B.2). This implies the following Euler

Equation
1

ct

dct
dt

=
1

γ

(
rt − ρ+

ζcγt
a+ a

)
(B.4)

The household must also satisfy the following transversality condition:

lim
t→∞

e−ρtc−γt at ≤ 0 (B.5)

B.2 RA-BIU: Equilibrium Definition

The definition of equilibrium for this model is exactly as in Section A.2, with the

exception that the Euler equation is given by (B.4).

Price Level Determination. As in the main text, each real equilibrium defines a

unique price level determined by:

P0 =
B0

b0
(B.6)

The path of inflation is then determined residually through the Fisher identity πt =

it− rt. We assume for simplicity a monetary policy peg, it = i∗, but note that all our

results on equilibrium uniqueness extend to the more general monetary rules outlined

in Section 2.3.

B.3 RA-BIU: Uniqueness with Constant Surpluses

We now show that a unique real equilibrium exists under a constant, strictly positive

surplus rule τt = τ ∗, where τ ∗ > 0.

Proposition 1. A unique real equilibrium exists. Moreover, rt = r∗ and bt = b∗ for

all t ≥ 0, where r∗ and b∗ are strictly positive constants that are given by:

r∗ =


−(τ∗+ζ−ρa)+

√
(τ∗+ζ−ρa)2+4ρaτ∗

2a
if a > 0

ρτ∗

τ∗+ζ
if a = 0

(B.7)

and

b∗ =
τ ∗

r∗
(B.8)
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Proof. Our proof proceeds in several steps.

Step 1: Monotonicity of real assets. We first show that at is increasing if at > a∗

and decreasing if at < a∗, where a∗ > 0 is the unique steady-state value of real debt.

We then show that this implies that at < a∗ at any t violates the non-negativity

constraint on debt. Finally, we show that at > a∗ at any t is inconsistent with

household optimality.

First, note that equation (B.4) together with ct = 1 at all t implies that the real

rate is given by the following equation for all t

rt = ρ− ζ
1

at + a
(B.9)

Imposing market clearing and using the government budget constraint (B.3), we can

derive an expression for the dynamics of real debt

ȧt =

(
ρ− ζ

1

at + a

)
at − τ ∗ (B.10)

where ȧt ≡ dat
dt
. The steady-states of this differential equation are given by

τ ∗

a∗
= ρ− ζ

1

a∗ + a
(B.11)

Note that the left-hand side of the above equation is decreasing in a∗ whenever τ ∗ > 0

(and asymptotes to zero as a∗ → ∞ and infinity as a∗ → 0), while the right-hand

side is increasing in a∗ (and asymptotes to ρ > 0 as a∗ → ∞). Moreover, both terms

are continuous for a∗ > 0. Hence, a unique steady-state with a strictly positive real

rate exists. Denote this real rate by r∗ > 0.

Further, ȧt is strictly positive whenever at ∈ (a∗,∞) and strictly negative when-

ever at ∈ (0, a∗). Suppose otherwise. We have that:

dȧt
da

|at=a∗= r∗ + ζa∗(a∗ + a)−2 > 0 (B.12)

Moreover, ȧt is continuously differentiable on at > 0. Hence, ȧt(at) < 0 for some

at ∈ (a∗,∞) would imply that there exists an a∗∗ ∈ (a∗,∞) such that ȧt(a
∗∗) = 0,

thereby violating steady-state uniqueness.
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Step 2: Ruling Out Downwards Explosions. Next, we rule out all equilibria in

which at′ < a∗ for some t′ ≥ 0. By Step 1, at′ < a∗ implies that at′ < at for all t
′ ≥ t.

Moreover, there are no limit points such that limt→∞ at = a∗∗ for any a∗∗ > 0. Hence,

any path in which at′ < a∗ implies that the constraint at > 0 must be violated in

finite time.

Step 3: Ruling Out Upwards Explosions. We now rule out equilibria in which

at′ > a∗ for some t′ ≥ 0. We may integrate the government budget constraint (B.3)

forwards to obtain

a0 = lim
T→∞

[∫ T

0

exp

(∫ s

0

−rudu
)
τ ∗ds+ exp

(∫ T

0

−rudu
)
aT

]
(B.13)

Note that rt > 0 whenever at > a∗, so the first term in the limit is well-defined.

Moreover, (B.3) implies that assets will be growing at rate rt whenever at ≥ a∗.

Hence, the second-term is non-zero if and only if at′ ≥ a∗ for some t′ ≥ 0.

We now show that household optimality implies that this second term must nec-

essarily be finite. Substituting for the real rate, we obtain:

lim
T→∞

[
exp(−ρT )aT × exp

(∫ T

0

ζ
1

au + a
du

)]
(B.14)

The first-term in this expression is zero by the transversality condition (B.5). The

second term is bounded as assets are growing at an exponential rate. Hence, we must

have at = a∗ and rt = r∗ for all t ≥ 0. Equation (B.13) then implies that the second

term is zero and thus a0 must be given by

a0 =

∫ ∞

0

exp

(∫ s

0

−r∗du
)
τ ∗ds =

τ ∗

r∗
= a∗ (B.15)

Substituting for a∗ in (B.9) yields a quadratic equation with a unique, strictly positive

root given by (B.7). This completes the proof.

The intuition for this result closely mirrors that of the representative agent econ-

omy. The system of equations (B.3) and (B.4) are globally unstable. Paths in which

b0 < b∗ therefore lead to downward explosions, which violate the non-negativity con-

dition on debt. Paths in which b0 > b∗ lead to an excessive accumulation of assets,
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(a) Surpluses (b) Deficits

Note: Dynamics for real assets in the RA-BIU economy when τ∗ > 0 (left panel) and τ∗ < 0
(right panel), as given by (B.3) and (B.4)

thereby violating household optimality. These dynamics are graphically depicted in

Figure 13a. Note that r∗ is strictly increasing in τ ∗, with r∗ → ρ and a∗ → ∞ as

τ ∗ → ∞. In this sense, the steady-state asset demand in the RA-BIU economy (B.18)

exhibits many similar features to the heterogeneous agent economy considered in the

main text.

B.4 RA-BIU: Dynamics with Constant Deficits

Next, we consider dynamics under constant deficits τ ∗ < 0. We show that the price

level is generally no longer determinate for a given value of initial nominal debt. In-

tuitively, the steady-states of the government accumulation equation (B.3) form an

upward sloping locus in r − b space, as depicted graphically in Figure 13b. This can

give rise to steady-state multiplicity, eliminating the explosive dynamics that are re-

quired in order to obtain uniqueness. The following proposition formally characterizes

the nature of this steady-state multiplicity.

Proposition 2. Suppose ρa < ζ. Then:

1. If a = 0, a unique steady-state exists if τ ∗ ∈ (−ζ, 0), and no steady-state exists

if τ ∗ ∈ (−∞,−ζ].
2. If a > 0, there exists a τ ∈ (ρa− ζ, 0) such that two distinct steady-states exist

if τ ∗ ∈ (τ , 0), no steady-state exists if τ ∗ ∈ (−∞, τ), and a unique steady-state

exists if τ ∗ = τ

7



Proof. We may substitute for steady-state assets in (B.9) to obtain

r∗ = ρ− ζ
τ∗

r∗
+ a

(B.16)

We may solve the above equation to express the steady-states of the system as:

r∗ =


−(τ∗+ζ−ρa)±

√
(τ∗+ζ−ρa)2+4ρaτ∗

2a
if a > 0

ρτ∗

τ∗+ζ
if a = 0

(B.17)

and

a∗ =
τ ∗

r∗
(B.18)

where we additionally require r∗ < 0 so that the non-negativity constraint on assets

is not violated. It is straightforward to see that this condition is satisfied if and only

if τ ∗ > −ζ when a = 0. This proves the first part of the proposition.

To prove the second part of the proposition, note a necessary and sufficient con-

dition for r∗ < 0 in the constant deficit economy is τ ∗ ∈ (ρa − ζ, 0) and that

(τ ∗ + ζ − ρa)2 + 4ρaτ ∗ > 0. This is negative at τ ∗ = ρa − ζ, positive at τ ∗ = 0,

and strictly increasing on (ρa − ζ, 0). Hence, there exists a unique root of this ex-

pression within this interval given by τ ∈ (ρa− ζ, 0). It follows that are two distinct

steady-states whenever τ < τ ∗ < 0, no steady-states whenever τ ∗ < τ and a unique-

steady state whenever τ ∗ = τ .

The condition ρa < ζ ensures that there exists a negative interest rate such that

households are willing to hold strictly positive amounts of real assets (no steady-

state with deficits exists trivially if this condition is not satisfied). Note also that,

depending on the value of a, zero, one, or two equilibria can exist. Further, at least

one equilibrium exists as long as the level of deficits is not too large. We next show

how steady-state multiplicity is tied to price level determinacy. In particular, a unique

equilibrium exists if and only if a unique steady-state exists.

Proposition 3. The following statements are true.

1. If no steady-state exists, then no real equilibria exist.

2. If a unique steady-state exists, then there exists a unique real equilibrium with

constant real rates rt = r∗H = r∗L and real assets bt = b∗H = b∗L.
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3. If two distinct steady-states exist, then there exists a continuum of real equilibria

indexed by b0 ∈ (0, b∗H ].

Proof. Suppose no steady-states exist. Equation (B.3) then implies that real assets

will tend to infinity or minus infinity for any given b0. The former case is ruled out,

as it violates the transversality condition by Proposition 1. The latter case is ruled

out as it implies that assets will violate their non-negativity constraint in finite time.

Hence, no equilibria exist.

Next, suppose that a unique steady-state exist. Define the function

r(at) = ρ− ζ

at + a
(B.19)

From (B.3), steady-states are given by the roots to

g(a) = r(a)− τ ∗

a
(B.20)

There exists a unique a∗ such that g(a∗) = 0 by assumption. Moreover, g(a) → ρ > 0

as a→ ∞, so we must have g′(a∗) > 0 by the intermediate value theorem. Using the

government accumulation equation, the dynamics of real debt around a∗ are given by

d
ãt
dt

= [r′(a∗)a∗ + r(a∗)]ãt

= [r′(a∗) +
τ ∗

(a∗)2
]
ãt
a∗

= g′(a∗)
ãt
a∗

> 0

where ãt = at − a∗, to first-order. Because a∗ is unique by assumption, real assets

explode upwards exponentially at a rate rt when a0 > a∗ (violating (B.5)) and down-

wards when a0 < a∗ (violating the non-negativity of assets in finite time). Hence, a

unique equilibrium exists.

Suppose now that two equilibria exist a∗H > a∗L. The top equilibrium is locally

unstable by the argument presented above. The bottom equilibrium is locally stable,

since g(a) → ∞ as a → ∞. Hence, g′(a∗L) < 0. This implies that all equilibria

with b0 ∈ (0, b∗H) converge to b∗L, while all equilibria with b0 > b∗H feature explosive

dynamics that violate (B.5). Thus, there exist a continuum of equilibria indexed by

b0 ∈ (0, b∗H ].

One can show that the presence of two steady-states imply a non-singular basin

9



of attraction for the economy. Hence, a continuum of real equilibria, indexed by their

initial condition b0, are possible. Note that the final condition places a lower bound

on the price level for any given level of initial nominal assets, given by P0 =
B0

b∗H
.

C Additional Derivations

C.1 Derivation of Optimal Consumption Dynamics

This section derives expressions for the consumption dynamics of unconstrained con-

strained households.

Unconstrained Households. We show that the expected consumption dynamics

for unconstrained households are given by

Et [dcjt]
cjt

=
1

γ
(rt − ρ) dt+

1

γ

∑
z′

λzjtz′

(
c(ajt, z

′,Ωt)

cjt

)−γ

dt+
∑
z′

λzjtz′

(
c(ajt, z

′,Ωt)

cjt

)
dt.

(C.1)

Here we use the short-hand notation cjt := c(ajt, zjt,Ωt) to denote the consumption

of household j at time t. Recall the HJB Equation:

ρVt(a, z) = max
c
u(c)+st(a, z)∂aV (a, z)+

∑
z′ ̸=z

λz,z′ [Vt(a, z
′)−Vt(a, z)]+∂tVt(a, z) (C.2)

where u(c) = c1−γ

1−γ and st(a, z) is the savings function (11). The FOC is:

u′(c) = ∂aVt(a, z) (C.3)

Differentiating the above with respect to a yields

u′′(ct(a, z))∂act(a, z) = ∂2aaVt(a, z) (C.4)

Differentiating with respect to t yields

u′′(ct(a, z))∂tct(a, z) = ∂2atVt(a, z) (C.5)
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The envelope condition for (C.2) is:

ρ∂aVt(a, z) = ∂2aaVt(a, z)st(a, z)+rt∂aVt(a, z)+
∑
z′ ̸=z

[∂aVt(a, z
′)−∂aVt(a, z)]+∂2atVt(a, z)

(C.6)

Using (C.4) and (C.5) into the equation above yields:

(ρ− rt)u
′(ct(a, z)) =

∑
z′ ̸=z

λzz′ [u
′(ct(a, z

′))− u′(ct(a, z))]

+u′′(ct(a, z))[∂tct(a, z) + st(a, z)∂act(a, z)]

(C.7)

(C.7) holds at any point on the interior of the state space a > 0 (i.e. for all uncon-

strained households). Using Ito’s lemma for jump processes, we can write it as:

(ρ− r)u′(ct(aj, zj)) =
dE[u′(ct(aj, zj))]

dt
(C.8)

where we suppress the dependence of ajt and zjt on t for notational simplicity. Fur-

thermore, using Ito’s lemma on ct(aj, zj) yields

dcj =

∂act(aj, zj)st(aj, zj) + ∂tct(aj, zj) +
∑
z′ ̸=zj

λzjz′ [ct(aj, z
′)− ct(aj, zj)]

 dt
+[ct(aj, z

′)− ct(aj, zj)]dÑj

(C.9)

where Ñj is the compensated Poisson process for the stochastic process of income z′.

Expected consumption therefore follows:

E[dcj] =

∂act(aj, zj)st(aj, zj) + ∂tct(aj, zj) +
∑
z′ ̸=zj

λzjz′ [ct(aj, z
′)− ct(aj, zj)]

 dt
(C.10)

We may combine this with (C.7) to obtain

(ρ− rt)u
′(ct(aj, zj)) =

∑
z′ ̸=zj

λzjz′ [u
′(ct(aj, z

′))− u′(ct(a, zj))]

+u′′(ct(aj, zj))
E[dcj]
dt

− u′′(ct(aj, zj))
∑
z′ ̸=zj

λzjz′ [ct(aj, z
′)− ct(aj, zj)]

(C.11)
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This yields (C.1) after dividing by u′′(ct(aj, zj)) and specializing to u′(c) = c1−γ

1−γ

Constrained Households. We show that the expected consumption dynamics for

borrowing constrained households satisfy:

Et [dcjt]
cjt

=
∑
z′

λzjt,z′

(
c(ajt, z

′,Ωt)

cjt

)
dt. (C.12)

The consumption dynamics for constrained households are given by

dct(0, zj) =
∑
z′ ̸=zj

λzjz′ [ct(0, z
′)− ct(0, zj)]dt+ [ct(0, z

′)− ct(0, zj)]dÑj (C.13)

since households consume their income whenever constrained (until receiving a more

favourable income draw). Taking expectations and dividing by ct(0, zj) then yields

(C.12) directly.

C.2 Existence of r

This subsection shows that there exists a finite r such that no household saves in a

stationary equilibrium if r ≤ r. Suppose no such r exists. Note that this implies

that there must exist a non-zero mass of households that are unconstrained in any

stationary equilibrium, for all r < ρ.

Proposition 2 in Achdou et al. (2022) shows that there exists a finite upper bound

on the state space for assets in a stationary equilibrium. Moreover, z > 0. Hence,

marginal utility and consumption are bounded from above and are strictly greater

than zero for all ajt and zjt. Equation (C.1) then implies that there must exist an r

such that
E[dct(ajt, zjt)]

dt
< 0

for all households j that are unconstrained. But this would then imply that aggregate

consumption must be decreasing, which would violate market clearing. Hence, there

cannot exist a non-zero mass of households that are unconstrained in a stationary

equilibrium with r < r. But this implies the existence of such an r, a contradiction.
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C.3 Uniqueness with Constant Surpluses

In this section, we show that explosive paths for real assets are ruled out by the

household transversality condition. Our proof strategy entails decomposing the ex-

pectation in (24) and aggregating across households to show that the rate of growth

of aggregate assets is bounded below by the discount rate ρ.

Consider a strictly positive sequence of real rates (rt)t≥0. Recall that the transver-

sality condition in the stochastic economy is:

lim
t→∞

[Et exp(−ρt)u′(ct(ajt, zjt))ajt] = 0 (C.14)

The household Euler equation gives us a differential equation for the evolution of

expected marginal utility.

E0[du
′(ct(ajt, zjt))]

u′(c0(aj0, zj0))
= (ρ− rt)dt (C.15)

We may solve this ordinary differential equation to obtain

E0[u
′(ct(ajt, zjt))] = u′(c0(aj0, zj0)) exp

(
ρt−

∫ t

0

rsds

)
(C.16)

We next decompose the expectation term in the household transversality condition:

lim
t→∞

[E0 exp(−ρt)u′(ct(ajt, zjt))ajt] = lim
t→∞

[exp(−ρt)E0 [u
′(ct(ajt, zjt))]E0 [ajt]

+ exp(−ρt)Cov0(u′(ct(ajt, zjt)), ajt)]
(C.17)

where the covariance is conditional on the households’ time-zero information set. We

may substitute for the first term using (C.16) to obtain:

lim
t→∞

[
exp

(
−
∫ t

0

rsds

)
u′(c0(aj0, zj0))E0 [ajt] + exp(−ρt)Cov0(u′(ct(ajt, zjt)), ajt)

]
= 0

(C.18)

We may also bound the covariance term via the Cauchy-Schwarz inequality to obtain

exp(−ρt)Cov0(u′(ct(ajt, zjt)), ajt)| ≤ exp(−ρt)
√
Var0(u′(ct(ajt, zjt))

√
Var0(ajt)

≤ exp(−ρt)y
−γ
min

2

√
E0[(ajt)2]
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where last the inequality has made use of the fact that u′(cjt) ≤ y−γminand the Popoviciu

bound on variances (Bhatia and Davis, 2000). Finally, we provide a bound on the

variance of individual asset holdings. If asset holdings are uniformly bounded, the

bound is trivially zero. So we only need to concern ourselves with cases in which

individual assets may diverge to infinity. In these cases, we can use standard results

on the asymptotic behaviour of the consumption function to provide an upper bound

on assets (Benhabib et al., 2015; Achdou et al., 2022). In particular, we have:

lim
ajt→∞

ϕtajt
cjt

= 1 (C.19)

where ϕt > 0. We may then use the household budget constraint to show that assets

grow at a rate rt − ϕt asymptotically, which yields the bound

ajt ≤ Ξ exp

(∫ t

0

(rs − ϕs)ds

)
, a.s. (C.20)

for some finite Ξ > 0. Using the Popoviciu inequality once again, we obtain

| exp(−ρt)Cov0(u′(cjt), ajt)| ≤ exp(−ρt)y
−γ
min

4
Ξ exp

(∫ t

0

(rs − ϕs)ds

)
(C.21)

Under the assumption that there exists some t′ > 0 such that rt ≤ ρ for t ≥ t′, the

right-hand side vanishes as we take t → ∞. Section G provides sufficient condition

for rt < ρ for all t ≥ 0.

We now show that (C.18) precludes explosive paths for real aggregate debt. In

particular, we show that

lim
t→∞

[
exp

(∫ t

0

−rsds
)
at

]
= 0 (C.22)

where at is the amount of aggregate asset holdings in the economy at time t. To this

14



end, we integrate (C.18) over households to obtain:

lim
t→∞

[∫
a,z

E0 exp(−ρt)u′(c0(a, z))adGt(a, y)

]

≤ lim
t→∞

m

exp
(
−
∫ t

0

rsds

)∫
a,y

Ea0=a [at] dGt(a, z)︸ ︷︷ ︸
āt

 = 0

where m is an upper bound on marginal utility at t = 0: u′(ci0(a
i)) ≤ m ∀a, y ∈

supp G0(a, y), a.e. and whereGt(·, ·) is the distribution over assets and income at time

t. Note that term in the integral in the second inequality is equal to aggregate asset

holdings by the exact law of large numbers (Duffie and Sun, 2012). This shows that

no equilibria exist in which government debt explodes upwards. Downward explosion

paths are ruled out by the non-negativity constraint on aggregate real debt.

C.4 Finite Difference Approximation

We begin by deriving the Kolmogorov Forward Equation (KFE) for wealth shares.

Note that the dynamics for wealth shares ωjt =
ajt
at

is given by

dωjt
ωjtdt

=
dajt
ajtdt

− db

btdt
(C.23)

Using Equations (6) and (18) yields

dωjt
dt

= ωjt

(
rtajt + zjt − τt(zjt)− cjt

ajt
− rtbt − st

bt

)
(C.24)

dωjt
dt

=
zjt − τt(zjt)− cjt + ωjtst

bt
(C.25)

This implies that the KFE for wealth shares is given by:

∂tf(ω, z) = A∗
ω[f, b](ω, z) +A∗

z[f ](z) (C.26)
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where

A∗
ω[f, b](ω, z) = ∂ω

[
f(ω, z)

z − τt(z)− ct(ω, z; f, b) + ωst
b

]
(C.27)

and

A∗
z[f ](z) = −f(ω, z)

∑
z′ ̸=z

λzz′ +
∑
z′ ̸=z

λz′zf(ω, z
′) (C.28)

where we have made the dependence of the consumption function on aggregate state

variables explicit. Note further that these operators are adjoint to underlying opera-

tors Aω and Az.

We may discretize the distribution f(ω, z) into N = Nω × Nz discrete points,

where Nω is a discrete grid for ω of width ∆ω. We denote the discretized distribution

as f and write the dynamics of the joint system as

df

dt
= Aω [ft, bt]

T ft +AT
z ft (C.29)

db

dt
= r [ft, bt] bt − s∗ (C.30)

The interest rate functional r [ft, bt] corresponds to the interest rate functional in

Equation (25) where we have substituted for the discretized endowment share distri-

bution. The matrix Aω [ft, bt] is a finite difference approximation to A[f, b] using the

appropriate upwind scheme (Achdou et al., 2022). Hence, it is a tridiagonal matrix

which consists of the following terms:{
0,−z − τt(z)− ct(ω, z; f, b) + ωst

b∆ω

,
z − τt(z)− ct(ω, z; f, b) + ωst

b∆ω

}
(C.31)

The matrix Az is the Markov transition matrix for z in the product space ω × z.

Note that it is not indexed by z because the operator Az is linear. The rows of both

Aω [ft, bt] and Az sum to zero to ensure that ft preserves mass.

The linearized system can be exactly expressed as (31) if the effect of f on the

interest rate is small. A sufficient condition is that the real interest rate is invariant

to changes in the endowment share distribution, which would occur if consumption

functions were linear in wealth. However, because the interest rate functional uses a

consumption-based aggregator, in practice it is only necessary for the consumption

function to be linear amongst high-wealth households, who consume relatively more

of the aggregate endowment.
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C.5 Uniqueness with Zero Surpluses

The government accumulation equation with zero surpluses is

dbt = [r(Ωt)bt]dt (C.32)

This implies a steady-state interest rate of r∗ = 0 whenever a(0) > 0, with an

associated steady-state level of real debt given by b∗ ≡ a(0). The first-order dynamics

of this system around the steady-state are given by:

dbt = [b∗∂br(Ω
∗)]dt (C.33)

The last term is strictly positive due to household behaviour. Hence, the steady-state

is locally saddle-path stable. Since B0 > 0 is given, there exists a unique, finite value

of P0 such that the equilibrium converges back to the steady-state. There are also a

continuum of stationary real equilibria with P = ∞, in which r < r and aggregate

real debt is zero. This proves local uniqueness of the equilibrium. Conditions for

global uniqueness are outlined in Online Appendix C.3.

C.6 Steady-State Welfare Comparison

We show that steady-states with higher real interest rates are Pareto ranked for any

initial condition of assets ajt and income zjt. In particular, consider a particular

profile of income shocks {zjt}t≥0 that induces a (realized) consumption and savings

streams {cjt, ajt} under a constant real interest rate r∗L. This consumption plan can

also be implemented at a higher interest rate r∗H > r∗L for the same sequence of income

shocks, since the change in savings in any given period will be:

dajt = [(r∗H − r∗L)ajt]dt (C.34)

which is weakly positive for any given ajt > 0 (recall that the surplus s∗, and hence

taxes and transfers, are fixed and independent of the level of the real interest rate).

Higher interest rates weakly expand the budget set of all households for any given aj0

and zj0. This proves that a steady-state with r∗H Pareto dominates r∗L.
40

40This proof strategy follows Aguiar et al. (2021), who construct robust Pareto-improving policies
in the presence of capital accumulation.
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C.7 Unique Steady State with Real Debt Reaction Rule

Our argument for uniqueness proceeds in three steps. First, we derive conditions for

a unique steady-state. Second, we derive conditions for the steady-state to be saddle-

path stable. This ensures local uniqueness. Finally, we consider whether explosive

paths in debt can be ruled out globally. This ensures global uniqueness.

Steady-State Uniqueness. Suppose the government follows a fiscal rule of the

form:

st = s∗ + ϕb(bt − b∗) (C.35)

where s∗ = r∗b∗ is consistent with any given point on the household demand curve,

so that the tuple (b∗, r∗) = (a(r∗), r∗) with r∗ < 0. The government accumulation

equation is:

dbt = [rtbt − st]dt (C.36)

The null-clines of the government accumulation equation are then defined by the

following function:

r(b) =
s∗ − ϕbb

∗

b
+ ϕb (C.37)

A sufficient condition for steady-state uniqueness is that this function is downwards

sloping. This will ensure that it intersects the upwards sloping steady-state demand

curve a(r) exactly once. The slope of this function is

dr

db
= −s

∗ − ϕbb
∗

b2
(C.38)

= −r
∗b∗ − ϕbb

∗

b2
(C.39)

which is strictly negative whenever r∗ > ϕb. Hence, ϕb < r∗ < 0 is sufficient for

steady-state uniqueness.

Local Uniqueness. We now examine conditions for this fiscal rule to give rise to

local uniqueness. Under our maintained assumptions on the dynamical system that

obtain (31), local uniqueness amounts to checking whether the eigenvalues of the

government accumulation equation are strictly positive. The equilibrium dynamics

are:

dbt = [(r(Ωt)− ϕb)bt − (r∗ − ϕb)b
∗]dt (C.40)

18



The first-order dynamics of this system around the steady-state are given by:

dbt = [r(Ω∗)− ϕb + b∗∂br(Ω
∗)]dt (C.41)

The last term is positive because of household behavior. The sum of the first two

terms are positive under the condition r∗ > ϕb. This proves local uniqueness.

Global Uniqueness. We now show that explosive dynamics are incompatible with

equilibrium. Online Appendix C.3 shows that a sufficient condition for explosive

dynamics to be inconsistent with equilibrium is for real debt to grow at a rate greater

than rt. But this follows from Equation (C.40) and ϕb < 0.

C.8 Unique Steady State with Real Rate Reaction Rule

Our argument for uniqueness proceeds in three steps, as before.

Steady-State Uniqueness. Suppose the government follows a fiscal rule of the

form:

st = s∗ + ϕr(rt − r∗) (C.42)

where s∗ = r∗b∗ is consistent with any given point on the household demand curve,

so that the tuple (b∗, r∗) = (a(r∗), r∗) with r∗ < 0. The government accumulation

equation is:

dbt = [rtbt − st]dt (C.43)

The null-clines of the government accumulation equation are then defined by the

following function:

r(b) =
(b∗ − ϕr)r

∗

b− ϕr
(C.44)

Our goal is to obtain an upward sloping function for the null-cline that intersects the

r-axis above a(r). This will ensure that it intersects the upwards sloping steady-state

demand curve a(r) exactly once, as in Figure 5b. The slope of this function is

dr

db
= −(b∗ − ϕr)r

∗

(b− ϕr)2
(C.45)

which is strictly positive whenever b∗ > ϕr. We also want the null-cline to intersect

the r-axis at a negative real interest rate that is greater than r (c.f. Figure 5b). This

19



occurs if

ϕr <
s∗

r∗ − a−1(0)
(C.46)

Local Uniqueness. We now examine conditions for this fiscal rule to yield local

uniqueness. Under our maintained assumptions on the dynamical system that obtain

(31), local uniqueness amounts to checking whether the eigenvalues of the government

accumulation equation are strictly positive. The equilibrium dynamics are:

dbt = r(Ωt)(bt − ϕr)− (r∗ − ϕr)b
∗]dt (C.47)

The first-order dynamics of this system around the steady-state are given by:

dbt = [r(Ω∗) + (b∗ − ϕr)∂br(Ω
∗)]dt (C.48)

Note that at the top-right steady-state, we must have

r′(Ω∗) > −r
∗

b∗
(C.49)

which ensures that a sufficient condition for the right-hand side of (C.48) to be positive

is ϕr < 0. Hence, ϕr < 0 is a sufficient condition for local uniqueness.

Global Uniqueness. We now show that explosive dynamics are incompatible with

equilibrium. Online Appendix C.3 shows that a sufficient condition for explosive

dynamics to be inconsistent with equilibrium is for real debt to grow at a rate greater

than rt. But this follows from Equation (C.40) and ϕr < 0.

C.9 Local Dynamics with Interest Payment Reaction Rule

Steady-State Invariance. Suppose the government follows the fiscal rule:

st = s∗ + ϕs(rtbt − r∗b∗) (C.50)

where s∗ = r∗b∗ is consistent with any given point on the household demand curve,

so that the tuple (b∗, r∗) = (a(r∗), r∗) with r∗ < 0. The government accumulation

equation is:

dbt = [rtbt − st]dt (C.51)
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The null-clines of the government accumulation equation are then defined by the

following function:

r(b) =
s∗ − ϕsr

∗b∗

b− ϕsb∗
=
s∗

b
(C.52)

which shows that the steady-states are unchanged. Hence, there is no scope for this

fiscal rule to eliminate steady-state multiplicity.

Local Dynamics. The dynamics of government debt are given by

dbt = (1− ϕs) (r(Ωt)bt − s∗) dt (C.53)

It follows that the stability properties of the two-steady states in the baseline case

with ϕs = 0 are reversed when ϕs > 1.

D Model With Foreign Demand for Debt

We assume that there exists a foreign sector that is populated by a representative

household. The foreign representative household derives utility over real consumption

streams and real debt holdings in terms of US goods.41 Preferences over foreign

consumption and bonds are given by

u (ct, dt) =
c1−γt

1− γ
+ ζ̃

d1−θt

1− θ

with γ ≥ 0 and θ ≥ 0. The parameter ζ̃ > 0 parameterizes the payoff derived from

real bond holdings. Households’ rate of time preference is ρ̃. We assume the foreign

sector grows at the same rate g as the domestic economy, thereby allowing for the

existence of a balanced growth path. The household’s growth-adjusted discount rate

is therefore ρ := ρ̃− (1− γ) g. In addition, we define rt := it − πt − g.

The household’s budget constraint in real and stationary terms is therefore

ddt = [rtdt + yf − ct]dt (D.54)

41Concretely, the foreign sector derives utility from nominal bonds in dollars divided by the US
price level: Bt/P

U
t S. This is equivalent to holding real debt in terms of the foreign sector good

(PF
t Bt/(P

F
t Bt)) where P

F
t is the foreign price level. The implicit assumption here is that the final

good is tradable, so that the exchange rate is constant.
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where yf > 0 is the foreign household’s endowment of the consumption good. Foreign

real consumption and real debt holdings must satisfy the following Euler equation:

·
ct
ct

=
1

γ

(
rt − ρ+ ζ̃

d−θt
c−γt

)
In steady-state, the aggregate consumption of the foreign sector is yf . Hence, for

a given interest rate r∗, we must have

0 = r∗ − ρ+
ζ̃

yf
d−θ

It follows that foreign sector demand for US government debt is given by

d(r∗) =

(
ρ− r∗

ζ

)− 1
θ

where we let ζ := ζ̃/yf . Note that the relationship between foreign debt holdings and

real interest rates can be written as:

log d = ζ +
1

θ
log(r∗ − ρ)

so a large θ means more inelastic demand.

Consider the limits of this function: as r∗ → −∞, d→ 0 and as r∗ → ρ, d→ ∞.

We want to argue that when the foreign demand is inelastic enough (θ large), we can

get rid of the high inflation steady-state. From Figure 5c, it is clear that what we

need is the bond supply function b (r) to lie above the total bond demand function

a(r) + d (r) as r → −∞. This condition can be re-written as:

lim
r→∞

b (r)

a (r) + d (r)
< 1

Or, equivalently

lim
b→0

rg (b)

rh (b) + rf (b)
< 1

where rg(b), rh(b), and rf (b) denotes the inverse debt demand functions for the gov-

ernment, domestic households, and the foreign sector, respectively. Substituting for
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these functional forms yields

lim
b→0

s
b

a−1(b) + (ρ− ζb−θ)

Online Appendix C.1 shows that there exists a finite real interest rate r such that

a(r) = 0. We may apply L’Hopital’s rule to obtain

lim
b→0

−s
b2 (κ+ θb−θ−1)

< 1

where κ is a finite positive constant. This inequality is satisfied if and only if

−s < θb1−θ

Recall that s < 0 so the LHS is a positive finite number. As long as θ > 1 the right-

hand-side converges to infinity as b → 0 which satisfies the inequality. Hence, the

condition we need in order to obtain steady-state uniqueness is θ > 1 which implies

that the foreign demand has to be inelastic enough.

E Extended Model for Quantitative Analysis

E.1 Model With Borrowing

In this section, we describe how the model is consistent with a non-zero lower bound

on real household assets and costly borrowing. Households face a borrowing limit

expressed in real terms:
Ajt
Pt

≥ ãt (E.55)

In order for the borrowing constraint to be consistent with balanced growth, we

assume that ãt grows at the rate of real output, ãt = y0e
gta for some a < 0. Note

that this implies that ajt ≥ a. Furthermore, we assume that borrowing is costly.

Households face a wedge ϑ ≥ 0 on the real interest rate when borrowing, so that the

interest rate they pay on debt is ϑ+rt. This borrowing wedge creates deadweight loss

in output that is equal to the wedge multiplied by the amount of assets borrowed.

This implies that aggregate consumption is slightly less than output (a difference

around 0.3% of steady-state output in our calibration). The associated boundary
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condition for the HJB equation (9) is:

∂aVt(0, z) ≥ (z − τt(z)− (rt + ϑ)a)−γ (E.56)

The government accumulation equation continues to follow equation (18), with the

understanding that bt ≥ 0, so that the government can lend, but not borrow.

E.2 Model With Long-Term Debt

The government now issues two securities: short-term debt Bs
t that pays a nominal

rate it, and long-term debt Bl
t. Long-term debt takes the form of depreciating consoles

that depreciate at a rate δ > 0, and that yield a flow coupon payment of χ > 0 as

in Cochrane (2001). We let qt denote the market value of this long-term bond. The

government’s budget constraint can be written as:

dBs
t + qtdB

l
t = [iBs

t + (χ− δqt)B
l
t − Ptst]dt (E.57)

The intuition for this equation is as follows. The right-hand side is the government’s

nominal deficit that consists of the primary deficit −Ptst, interest payments on short-

term debt iBs
t , and coupon payments plus redemption of long-term debt (χ− δqt)B

l
t.

Whenever the deficit is greater than zero, the government must issue additional debt.

It can do so either by issuing additional short-term debt or by issuing additional

long-term debt at the price of qt.

Similarly, we may define the nominal short- and long-term debt holdings of house-

hold j at time t as Asjt and A
l
jt, respectively. The household budget constraint becomes

dAsjt + qtdA
l
jt = [itA

s
jt + (χ− δqt)A

l
jt + (zjt − τt(zjt))Ptyt − Ptc̃jt]dt (E.58)

We define the market value of total government debt outstanding as Bt := Bs
t + qtB

l
t

and the total value of household assets as Ajt := Asjt+qtA
l
jt. We also define de-trended

real debt and assets as in the main text:

bjt =
Bt

Pt
and ajt =

Ajt
Pt

(E.59)

The next proposition demonstrates that there is maturity structure irrelevance for

government debt: bt and ajt are the only state variables in this economy.
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Proposition 4. The household budget constraint follows (6) and the real government

budget constraint follows (18) for t > 0. Moreover, the price of long-term debt satisfies

the following differential equation for t > 0:

q̇t
qt

+
χ− δqt
qt

= it (E.60)

Proof. See Not For Publication Appendix I

This proof shows that an economy with long-term debt collapses into an economy

with short-term debt in the absence of uncertainty. Equation (E.60) is an arbitrage

relationship between short- and long-term debt. In equilibrium, households are indif-

ferent between the two assets. Hence, long-term debt will only matter for inflation

dynamics insofar there is an unanticipated change in nominal rates it. Equation

(E.60) is a forward-looking equation.
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Not For Publication Appendix

F Derivation of Real Rate Functional

This section derives the real interest rate functional given in Equation (25). We start

from the characterization of optimal consumption dynamics contained in the Online

Appendix C.1. Namely, we use (C.9) and (C.13) to integrate across all households j:

d

dt

∫
j

ct(aj, zj)dj =

∫
j:u

∂act(aj, zj)st(aj, zj) + ∂tct(aj, zj) +
∑
z′ ̸=zj

λzjz′ [ct(aj, z
′)− ct(aj, zj)]

 dj

+

∫
j:c

∑
z′ ̸=zj

λzjz′ [ct(0, z
′)− ct(0, zj)]

(F.1)

where the dÑj terms vanish by the exact law of large numbers (Duffie and Sun, 2007,

2012). The first integral on the right-hand side is over unconstrained households

(j : u), while the second integral is over constrained households (j : c). Note that the

above equation must be equal to zero, since
∫
j
ct(aj, zj)dj = 1, by market clearing.

Dividing by u′′(ct(aj, zj)) in (C.7) and using CRRA preferences, we obtain:

−1

γ
(ρ− r)ct(aj, zj) =

∑
z′ ̸=zj

λzz′
1

u′′(ct(aj, zj))
[u′(ct(aj, z

′))− u′(ct(aj, zj))]

+∂tct(aj, zj) + st(aj, zj)∂act(aj, zj)

(F.2)

Integrating over all unconstrained agents and using (F.1) to substitute for ∂tct(aj, zj)+

st(aj, zj)∂act(aj, zj) yields

−1

γ
(ρ− r)

∫
j:u

ct(aj, zj)dj =

∫
j:u

∑
z′ ̸=zj

λzjz′
1

u′′(ct(aj, zj))
[u′(ct(aj, z

′))− u′(ct(aj, zj))] dj

−
∫
j

∑
z′ ̸=zj

λzjz′(ct(aj, z
′)− ct(aj, zj))dj

(F.3)
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Moreover, constrained agents consume their current income zj. Hence, adding and

subtracting − 1
γ
(ρ − r)

∫
j:c
zjdj to the equation above and rearranging yields an ex-

pression for the interest rate:

r = ρ+γ

∫
j:u

∑
z′ ̸=zj λzjz′

[u′(ct(aj ,z′))−u′(ct(aj ,zj))]
u′′(ct(aj ,zj))

dj −
∫
j

∑
z′ ̸=zj λzjz′(ct(aj, z

′)− ct(aj, zj))dj

1−
∫
j:c
zjdj

(F.4)

Using CRRA utility, and the fact that λzjzj −
∑

z′ ̸=zj λzjz′ , we may write the above

expression as

r = ρ−

∫
j:u
c(aj, zj)

[∑
z′ λzjz′

(
c(aj ,z

′)
c(aj ,zj)

)−γ]
dj + γ

∫
j
c(aj, zj)

[∑
z′ λzjz′

c(aj ,z
′)

c(aj ,zj)

]
dj

1−
∫
j:c
zjdj

(F.5)

Relative to the representative agent economy, the sum differs by two terms: the

(i) marginal utility variation due to income risk for unconstrained agents, and (ii)

consumption variation due to income risk for both constrained and unconstrained

agents, multiplied by the coefficient of relative risk aversion. All of these terms

are scaled by one minus the total income holdings of constrained agents (which is

trivially less one since aggregate consumption is equal to one). The interest rate can

be written as a functional in terms of aggregate states by replacing ct(ajt, zjt) with

c(ωjtbt, zjt,Ωt). Equation (25) then follows directly.

G Household Problem with Diffusion Process

This section sets up an economy in which income follows a diffusion process. We

derive as an auxiliary result that rt < ρ for all t ≥ 0 in this economy.

Concretely, we assume that household income follows a diffusion process given by

dzjt = µz(zjt)dt+ σz(zjt)dBjt (G.6)

where Bjt is adapted Brownian motion, independent across j, and µz(·) : R → R
and σz(·) : R → R+ are twice-differentiable functions. We further assume that (G.6)

admits a stationary distribution. The household problem now satisfies the following

2



HJB equation:

ρVt(a, z)− ∂tVt(a, z) = max
c

c1−γ

1− γ
+ ∂aVt(a, z) [rta+ z − τt(z)− c]

+µz∂zVt(a, z) +
1

2
σ2
z∂

2
zzVt(a, z), (G.7)

together with the boundary condition ∂aVt(0, z) ≥ (z − τt(z))
−γ. A solution to the

HJB equation alongside (12) solves the household problem. The associated KFE

equation is:

∂tgt(a, z) = −∂a[gt(a, z)ςt(a, z)]− ∂z[µz(z)gt(a, z)] +
1

2
∂2zz[σ

2
z(z)gt(a, z)] (G.8)

Expected Consumption Dynamics. We now derive the expected consumption

dynamics for unconstrained households. Following exactly the same steps outlined in

Online Appendix C.1 for the case in which income follows a Poisson process, we can

derive an Euler equation for unconstrained households:

(ρ− rt)u
′(ct(a, z)) = µz(z)u

′′(ct(a, z))∂zct(a, z)

+
1

2
σ2
z(z)

(
u′′(ct(a, z))∂

2
zzct(a, z) + u′′′(ct(a, z))(∂zct(a, z))

2
)

+ u′′(ct(a, z))[∂tct(a, z) + ςt(a, z)∂act(a, z)]

(G.9)

We can also use Ito’s lemma on ct(ajt, zjt) to obtain

dct(ajt, zjt) =[∂tct(ajt, zjt) + ςt(ajt, zjt)∂act(ajt, zjt)]dt

+ [µz(zjt)∂zct(ajt, zjt) +
1

2
σ2
z(zjt)∂

2
zzct(ajt, zjt)]dt+ σz(zjt)∂zct(ajt, zjt)dBjt

(G.10)

Taking expectations of the above equation, combining it with (G.9), and imposing

that u is isoleastic with curvature parameter γ yields the expected consumption dy-

namics for unconstrained households:

Et[dcjt]
cjtdt

=
1

γ
(rt − ρ) +

γ + 1

2
σ2
z(zjt)

(
∂zct(ajt, zjt)

ct(ajt, zjt)

)2

(G.11)
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Constrained households simply consume their income. Hence, their consumption

dynamics are

dcjt = [µz(zjt)]dt+ σz(zjt)dBjt (G.12)

The expected consumption dynamics of constrained households are therefore given

by
Et[dcjt]

dt
= µz(zjt) (G.13)

Derivation of Interest Rate Functional. Integrating over the consumption dy-

namics of unconstrained households and making use of the fact that∫
j

dcjt
dt

dj = 0

yields

0 =

∫
j:u

1

γ
(rt − ρ)cjtdj +

∫
j:u

(γ + 1)

2
ct(ajt, zjt)

(
σz(zjt)∂zct(ajt, zjt)

ct(ajt, zjt)

)2

dj

+

∫
j:c

[µz(zjt)ct(ajt, zjt)] dj

(G.14)

where we have used (G.11) and (G.13). Finally, imposing market clearing
∫
j
cjtdt = 1

yields

rt = ρ−
γ(γ+1)

2

∫
j:u
ct(ajt, zjt)

(
σz(zjt)∂zct(ajt,zjt)

ct(ajt,zjt)

)2
dj + γ

∫
j:c

[ct(ajt, zjt)µz(zjt)] dj

1−
∫
j:c
zjtdj

(G.15)

Note that this implies that rt < ρ for all t ≥ 0 (not just in steady-state) if no

households are constrained, or if
∫
j:c
µz(zjt)dj > 0, so that constrained households ex-

pect their income to increase, on average. We may also write the formula analogously

as the one in the main text for the Poisson income process (25):

0 =
Cut
γ
(rt − ρ) + Cut Ẽut

[
γ + 1

2
σ2
z(z)

(
∂zct(a, z)

ct(a, z)

)2

− µz(z)

]
+ Ẽt [µz(z)] (G.16)
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H Additional Details on Long-Run Anchoring

In this section, we demonstrate how the monetary authority can eliminate all dynamic

equilibria that converge to the high inflation steady-state, leaving only a unique equi-

librium that leads to the saddle-path stable, low-inflation steady-state. Concretely,

suppose the monetary authority has the power to coordinate private sector beliefs

about long-run inflation. Under such a setting we envisage two pillars of central bank

policy: (i) a path or rule for short-term nominal interest rates it, and (ii) a long-run

inflation target π∗. Whereas the interest rate is a policy tool that the central bank

directly implements by intervening in appropriate markets or paying interest on re-

serves, the long-run inflation target is no more than an attempt to coordinate beliefs.

If:

(i) the long-run inflation target and the long-run nominal interest rate (π∗, i∗) are

set to be consistent with the equilibrium real rate at the saddle-path steady

state, i∗ − π∗ − g = r∗H ;

(ii) fiscal policy follows a constant deficit policy or a passive interest payment re-

action rule with ϕs < 1, so that the high real rate, low inflation steady-state is

saddle-path stable;

(iii) private sector beliefs about long-run inflation are consistent with the central

bank’s target,

then there is a unique real equilibrium and the price-level and inflation are pinned

down for all t. The third of these conditions is a big “if”, and there is no fundamental

reason to expect it to hold. However the key point is that managing long-run inflation

expectations is sufficient to pin down the price level and inflation in the short-run.

If the central bank is successful at convincing the private sector to coordinate on a

long-run inflation target, then this is sufficient to eliminate any indeterminacy about

inflation at all points in time. Note that anchoring long-run inflation expectations

at π∗ does not assume away the issue of price-level determination in the short-run.

Both the initial price level and subsequent inflation remain endogenous and depend

on monetary policy, fiscal policy and private sector behavior.

Even with long-run inflation anchoring, fiscal policy remains an essential compo-

nent of price-level determination. Coordinating long-run expectations only uniquely

determines the price-level in the short-run if fiscal policy acts in a way that ensures

5



the saddle-path stability of the low-inflation steady state. Such fiscal policy settings

are the same as those required for uniqueness in the case with persistent surpluses.

I Proof for the Model With Long-Term Debt

Proposition 5. The household budget constraint follows (6) and the real government

budget constraint follows (18) for t > 0. Moreover, the price of long-term debt satisfies

the following differential equation for t > 0:

q̇t
qt

+
χ− δqt
qt

= it (I.17)

Proof. We define the auxiliary variable u = Aljt. Note that this implies dAljt = u.

Hence, the households HJB equation is given by:

ρ̃Vt(A
l, As, z)− ∂tV (Al, As, z) =

max
c.u

c1−γ

1− γ
+ s̃t∂AsVt(A

l, As, z) + ∂AlVt(A
l, As, z)u+

∑
z′ ̸=z

λzz′ [Vt(A
l, As, z′)− Vt(A

l, As, z)]

where

s̃t := itA
s + (χ− δqt)A

l + (z − τ(z))Ptyt − Ptc̃t − qtu

The first-order condition with respect to u is given by:

qt∂AsV (Al, As, z) = ∂AlVt(A
l, As, z) (I.18)

We may differentiate with respect to time to obtain:

qt∂
2
As,tVt(A

l, As, z) + ∂tqt∂AsV (Al, As, z) = ∂Al,tVt(A
l, As, z) (I.19)

The envelope condition for the HJB with respect to Al is:

ρ̃∂AlVt−∂2t,AlVt = s̃t∂
2
As,AlVt+(χ− δqt)∂AlVt+u∂

2
AlVt+

∑
z′ ̸=z

λzz′ [∂AlVt−∂AlVt] (I.20)
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Similarly, the envelope condition for the HJB with respect to As is:

ρ̃∂AsVt − ∂2t,AsVt = s̃t∂
2
AsVt + it∂AsVt + u∂2Al,AsVt +

∑
z′ ̸=z

λzz′ [∂AsVt − ∂AsVt] (I.21)

Multiplying (I.21) by qt, subtracting Equation (I.20) from (I.21) and using (I.18) and

(I.19) yields:

(qtit − (χ− δqt)− ∂tqt)∂AlVt = 0 (I.22)

By market clearing, we must have ∂AlVt > 0 (otherwise no long-term debt would be

purchased in equilibrium). Hence, we have the arbitrage relationship:

q̇t
qt

+
χ− δqt
qt

= it (I.23)

Differentiating Bt = qtB
l
t+itB

s
t and using the (E.57) yields (15), which can be written

in real terms. This completes the proof.

J Supplement on Wealth Distribution and MPCs
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Figure 14: MPCs in the calibrated steady-state

This section provides some additional detail on the MPCs in the calibrated steady-

state. Figure 14a shows the dependence of marginal propensities to consume on real

assets, disaggregated by the highest and lowest income draws. The plotted MPCs are
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Figure 15
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Note: Impulse responses to a temporary increase in the wealth tax, with the proceedings dis-
tributed lump-sum, for various values of the wealth tax. In all experiments, the wealth tax
is levied on the top 10% of the wealth distribution, the proceeds of which are redistributed
lump-sum to the bottom 60%.

the quarterly marginal propensities to consume from an unanticipated $500 income

gain.

MPCs are not monotonically decreasing in real assets because there is a borrowing

wedge. Households with zero assets therefore have a high marginal propensity to

consume because of the discontinuous cost of borrowing (Kaplan and Violante, 2014).

Note that the MPCs of high income households lie uniformly below the MPCs of low

income households.

Figure 14b plots the distribution of MPCs in the calibrated steady-state. A large

number of households have an MPC of around 0.15 and hold zero assets. The average

MPC in the economy is 0.14, which is in line with commonly estimated values for

marginal propensities to consume (Jappelli and Pistaferri, 2010).
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K Inflationary Effects of Pure Redistribution

A comparison of the heterogeneous agent and representative agent economies in the

preceding experiments suggests that redistribution itself has effects on the price level

and inflation that are independent of the overall level of surpluses and nominal govern-

ment debt. To emphasize the inflationary effects of redistribution, Figure 15 shows

simulations from purely redistributive shocks. We consider one-time wealth taxes

levied on the top 10% of the wealth distribution, the proceeds of which are redis-

tributed lump-sum to the bottom 60%. Although these shocks do not entail any new

issuance of government debt or any change in primary deficits, they do cause a pe-

riod of inflation. The redistribution causes upward pressure on consumption because

low-wealth households have higher average MPCs than high wealth households. Equi-

librium is achieved through a period of higher real interest rates. The corresponding

lower government revenues require a downward revaluation in real debt through a

jump in the price level.

Inflationary Effects of Proportional Wealth Taxes. We contrast this exper-

iment with another version of wealth taxation. Consider an economy where the

government levies a proportional wealth tax at a rate of τb so that total primary

surpluses are s∗ + τbbt (where s
∗ are surpluses net of revenue from the wealth tax).

The real government budget constraint becomes:

dbt = [(rt − τb)bt − s∗] dt. (K.24)

The wealth tax appears in the household budget constraint in a similar fashion, as

it increases the after-tax real rate paid to the government, rt − τb. Changes in τb

therefore only affect the inflation rate through the Fisher equation, but otherwise

leave the real economy and the initial price level unchanged.

L Endogenous Output

In this subsection, we outline an economy in which labor is a variable input in pro-

duction. Next, we discuss how endogenous output affects price level and inflation

dynamics in response to unanticipated shocks.
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L.1 Set-Up

Households. The set-up of the household problem closely follows that of the main

text. However, we assume that households choose real consumption flows c̃jt and

hours worked ℓjt to maximize

E0

∫
e−ρt

[
c̃1−γjt

1− γ
− ϕ1−γ

t

ℓ1+ψjt

1 + ψ

]
dt (L.25)

where the expectation is taken with respect to households’ efficiency units of labour

zjt. The exponent ψ > 0 is the inverse of the Frisch elasticity of labor supply. The

term ϕt is a time-varying constant that augments the labor disutility in order to

allow the economy to be consistent with balanced growth when γ ̸= 1. Concretely,

we assume that

ϕt = ϕ̃egt (L.26)

where ϕ̃ > 0 and g > 0 is the growth rate of the economy. This formulation im-

plies that a stationary equilibrium exists. Moreover, the distribution of hours across

households is constant in the stationary equilibrium.42 The households nominal bud-

get constraint therefore satisfies

dAjt = [itAjt + (1− τ1t)zjtPtwtℓjt − Ptc̃jt + Ptτ0t]dt (L.27)

where wt is the real wage rate for effective labor services at time t, τ0t is a lump-sum

payment and τ1t is a constant proportional tax rate. We assume that τ0t grows at a

rate g > 0 in order to ensure that a stationary equilibrium exists:

τ0t = τ̃0e
gt (L.28)

Finally, the stochastic process for zjt and the definition of de-trended real variables

for the evolution of real debt are identical to those of the main text.

42We intentionally assume separability between hours and consumption in the instantaneous utility
function so as to maximize comparability between the economy with endogenous output presented
in this subsection and the endowment economy presented in the main text. In particular, the
endowment economy can be closely approximated for large ψ and a given calibrated ϕ̃. We note,
however, that preferences by King et al. (1988) leave the key mechanisms unaffected.
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Firms. We assume that perfectly competitive firms hire labor to produce output yt

with the constant returns to scale (CRS) production function

yt = ΘtLt (L.29)

where Θt is aggregate total factor productivity that grows at a rate g > 0 and Lt are

total effective hours:

Lt :=

∫
j

zjtℓjtdj (L.30)

CRS implies that the real wage rate wt is equal to Θt for all t ≥ 0.

Government. The dynamics for government debt are given by

dBt = [itBt − stPtyt]dt (L.31)

where st is the ratio of primary surpluses to output and is determined by the τ0t and

τ1t as

st =
τ0t
yt

+

∫
j∈[0,1]

τ1twtzjtℓjtdj (L.32)

De-trended real government debt then follows

dbt = [rtbt − st]dt (L.33)

We do not consider unanticipated changes in the nominal rate in this section. Conse-

quently, we assume an interest rate peg it = i∗ without loss of generality in analyzing

real dynamics.

Calibration. Our calibration sets ψ = 2, so that the intensive-margin Frisch elas-

ticity of labor supply is equal to one-half, in line with the recommendation of Chetty

et al. (2011). Moreover, we calibrate ϕ̃ so as to set total hours worked equal to unity.

Allowing labor to adjust on the intensive margin provides additional insurance to

households. As such, the discount rate increases to 6.1% p.a. (relative to 2.8% p.a.

from the calibration in the main text) in order to match a debt-to-annual GDP ratio

of 1.10. The values for the remaining parameters remain unchanged from Table 1.
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Figure 16
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Note: Impulse responses to a permanent expansion in primary deficits in the economy with
endogenous output. The dotted orange line shows the effects of a permanent reduction in
surpluses in the Representative Agent model due to a change in transfers. The solid blue
line labelled “Lump Sum” illustrates the dynamics following an expansion of lump sum
transfers. The dashed red line labelled “Tax Rate” illustrates the dynamics following a tax
cut. In all experiments, deficits increase by 0.7% of pre-shock GDP.

L.2 Quantitative Exercise

We consider the economy’s response to an increase in deficits. First, we consider

the economy’s response to a permanent change in τ̃0t from 0.333 to 0.340, keeping τ1

fixed. Second, we consider a permanent change in τ1t from 0.300 to 0.307, keeping

τ0t fixed. These changes amount to a change in deficits from 3.3% to 4% of GDP, if

output was unchanged (in line with the analysis of Section 5.5).

An increase in deficits due to a tax cut results in a smaller jump in the initial

price level, relative to the transfer expansion case. The main reason is that lower

taxation increases the labor supply (whereas a transfer expansion lowers it). The

corresponding rise in output raises tax revenues and attenuates the long-run increase
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in primary deficits relative to the transfer expansion.43

In both economies, however, real output eventually declines relative to the rep-

resentative agent benchmark. In order to understand this result, consider the tax

cut experiment. There are two forces that contribute to an increase in labor supply.

First, the tax cut directly raises the return to working, as explained above. Second,

households in the new steady-state hold lower amounts of wealth, on average. This

gives rise to positive wealth effects that also expands total hours worked. However,

the new steady-state features a lower long-run real rate – a force only present in the

heterogeneous agent economy. The reduction in the real rate increases consumption

state-by-state due to the intertemporal savings motive, thereby reducing total hours

worked. This last force is sufficiently strong that it counteracts the positive effect on

output due to the lower tax rate and the change in the wealth distribution. Con-

sequently, in the long-run output falls and deficits rise relative to the representative

agent economy.

43The tax cut also increases precautionary motives by amplifying the volatility of post-tax earn-
ings, in line with the reasoning of Section 5.5. The real interest rate therefore decreases relatively
less. Since the government now finances its debt at a higher cost, this a force that contributes
to a larger initial jump in the price level. However, this mechanism is dominated by labor-supply
channel.
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