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Abstract

Modern theories of aggregate supply are built on the foundation that firms set prices

and commit to producing whatever the market demands. We remove this strategic

restriction and allow firms to choose supply functions, mappings that describe the prices

charged at each quantity of production. Theoretically, we characterize firms’ optimal

supply function choices in general equilibrium and study the resulting implications for

aggregate supply. Aggregate supply flattens under lower inflation uncertainty, higher

idiosyncratic demand uncertainty, and less elastic demand. Quantitatively, our theory

can rationalize the flattening of aggregate supply during the Great Moderation and

steepening during the 1970s and 2020s.
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1 Introduction

At the heart of modern macroeconomic models are monopolistic firms that make decisions

under uncertainty. It is common to restrict these firms’ decisions to a specific class: setting a

price and committing to produce whatever the market demands. For example, price-setting

is assumed in classic models of aggregate supply based on exogenous, infrequent adjustment

(Taylor, 1980; Calvo, 1983), menu costs (Caplin and Spulber, 1987; Golosov and Lucas,

2007), and limited information (Mankiw and Reis, 2002; Woodford, 2003a). Price-setting

firms are also at the core of the ubiquitous New Keynesian framework (Woodford, 2003b).

However, as has long been recognized (see e.g., Grossman, 1981), price-setting is not

typically an optimal way for a firm to behave and is, at some level, an ad hoc modeling

assumption. Why should firms not be able to raise their prices when goods are flying off

the shelves? In practice, they can and do: firms use policies like temporary sales and surge

pricing to navigate changing demand conditions (Den Boer, 2015).

In this paper, we remove external restrictions on firms’ pricing strategies and instead al-

low firms to choose any supply function: a mapping that describes the price charged at each

quantity of production. Supply function choice is a standard approach in microeconomic

theory to model firms’ ability to adjust decisions to realized demand without imposing ad

hoc strategic restrictions (e.g., Grossman, 1981; Klemperer and Meyer, 1989). However, sup-

ply function choice has not previously been studied in general equilibrium, macroeconomic

models. Our goal is to understand how this enriched model of pricing and production at the

microeconomic level affects our understanding of the macroeconomy.

Introducing supply functions in an otherwise standard business-cycle model yields an

aggregate supply curve with an endogenous slope. That is, the relative response of inflation

and output to an aggregate demand shock depends on the interaction between uncertainty

and market structure, precisely because these forces affect firms’ optimal supply functions.

Aggregate supply flattens, or aggregate demand shocks have bigger real and smaller nominal

effects, under lower inflation uncertainty, higher idiosyncratic demand uncertainty, and less

elastic demand. Quantitatively, the model’s predictions for the slope of aggregate supply are

consistent with time-series and cross-sectional evidence. Thus, supply functions provide a

realistic and tractable foundation for a state-dependent aggregate supply curve.

Supply Function Choice of a Single Firm. We begin our analysis in partial equilib-

rium. We study a firm that faces a constant-price-elasticity demand curve and operates

a constant-returns-to-scale production function. It has log-normal uncertainty about its

competitors’ prices, demand, productivity, input prices, and the stochastic discount factor.

Given its beliefs, the firm chooses a supply function f : R2
++ → R that defines the firm’s
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supply curve as the locus of prices (p) and quantities (q) that solves f(p, q) = 0. Because

the market clears, the firm produces and prices where the market demand curve intersects

its supply curve. Internalizing this, the firm chooses its optimal, non-parametric supply

function to maximize its expected real profits under the stochastic discount factor. The ex

ante interpretation of the firm’s choice is in line with the ECON 101 notion of a supply curve:

a systematic plan relating the price that a firm charges and the quantity that it produces. We

show that the model has a complementary interpretation in terms of the firm’s information

set for price and quantity choices: allowing firms to choose supply functions is isomorphic

to allowing firms to condition prices and quantities on realized demand. This interpretation

links our model theoretically to the notion of rational expectations equilibrium (Lucas, 1972)

and practically to the aforementioned examples of firms adjusting prices in response to

current demand conditions. We finally note that the model nests the polar cases of price-

and quantity-setting studied in previous literature. By relaxing strategic restrictions, we

allow firms to choose strategies that are potentially preferable to these extremes.

We solve for the optimal supply function and show that it is endogenously log-linear:

log p = α0 + α1 log q. Thus, the firm’s behavior in response to changes in market demand

is described by its optimally chosen inverse supply elasticity α1, the percentage by which

the firm increases prices in response to a one percent increase in production. In turn, this

elasticity depends on the firm’s price elasticity of demand (i.e., its market power) and its

relative uncertainty about demand, competitors’ prices, and real marginal costs. These

relationships arise because uncertainty and market power shape firms’ relative desires to

hedge against different types of shocks.

Three comparative statics are particularly important for our macroeconomic analysis.

First, higher uncertainty about firm-level demand pushes toward a lower α1, or firms behav-

ing more like price-setters. The limit case of price-setting perfectly insulates firms against

demand shocks, as the optimal response of a firm to changing demand conditions is to set

its relative price equal to a constant markup on its real marginal cost. Second, higher un-

certainty about competitors’ prices pushes toward a higher α1, or firms’ behaving more like

quantity-setters. The limit case of quantity-setting perfectly insulates firms against shocks

to competitors’ prices as it allows the firm’s relative price to adjust perfectly in response

to such changes. Third, a lower elasticity of demand pushes toward a lower α1, or firms

behaving more like price-setters. More market power, thus defined, reduces the cost to the

firm of setting the “wrong” price.

General Equilibrium: From Supply Functions to Aggregate Supply. We next em-

bed supply-function choice in a business-cycle model with incomplete information (Woodford,

2003a; Hellwig and Venkateswaran, 2009). The model features: a representative household
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that demands differentiated consumption goods, demands money balances, and supplies la-

bor; macroeconomic shocks to the money supply and productivity; microeconomic shocks to

firm-specific wages, productivity, and demand; time-varying volatility for these shocks; and

intermediate goods firms that choose supply functions in the face of endogenous uncertainty.

Because of this uncertainty, shocks to the money supply can affect real aggregate output, as

in Lucas (1972).

We first characterize aggregate outcomes given fixed firm-level supply functions. The

unique log-linear equilibrium has an aggregate supply and aggregate demand representation.

That is, real GDP and the price level can be determined as the intersection of two curves: an

aggregate supply curve that is affected by productivity shocks but not monetary shocks and

an aggregate demand curve that is affected by monetary shocks but not technology shocks.

The “slope of aggregate supply” determines the relative within-period responses of the price

level and real output to an aggregate demand shock.

The slope of aggregate supply depends critically on the slope of firms’ microeconomic

supply functions. Aggregate supply is inelastic—or, money is neutral—if and only if firms

are quantity-setters. Aggregate supply is maximally elastic—or, money is as non-neutral as

possible—if and only if firms are price-setters. These results are disquieting in light of the

standard approach of assuming that firms set either prices or quantities. A key benefit of

the supply function approach is that the analyst does not inadvertently impose restrictions

on firms’ supply function choices, but allows these choices to be made optimally. Between

those extremes, the slope of aggregate supply is increasing in the slope of firm-level supply.

We next characterize how the slope of aggregate supply is endogenously determined via a

fixed point relating macroeconomic uncertainty to firms’ supply-function choice. This reveals

feedback loops: uncertainty affects supply functions, which affects the slope of aggregate

supply, and in turn shapes macroeconomic uncertainty. For a closed-form illustration, we

first study a special case that balances strategic complementarity (from aggregate demand

externalities) with substitutability (from wage pressure). In this case, the slope of aggregate

supply decreases in a sufficient statistic for firms’ uncertainty: their relative uncertainty

about idiosyncratic demand shocks vs. aggregate demand shocks. Away from the special case

of balanced strategic interaction, the model makes richer predictions in which the elasticity

of demand and the volatility of productivity shocks also affect the slope of aggregate supply.

We finally observe that microeconomic and macroeconomic supply depend on relative

rather than absolute uncertainties. Strikingly, even a vanishing amount of uncertainty can

be consistent with any level of monetary non-neutrality, depending on the exact composition

of uncertainty across different microeconomic and macroeconomic factors.

Our model predicts that the transmission of aggregate demand shocks is state-dependent
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because of firms’ endogenous supply-function choices. This has several implications. First,

more volatility in aggregate demand steepens aggregate supply. In our model, firms desire

prices to respond more to demand in environments with more nominal uncertainty, and

therefore endogenously lead demand shocks to have larger nominal effects and smaller real

effects. Second, more volatility in idiosyncratic demand conditions has the opposite effect,

flattening aggregate supply. Thus, counter-cyclical “risk shocks” at the microeconomic level

(Bloom et al., 2018) increase the real effect of aggregate demand shocks. Third, a lower

elasticity of demand (i.e., more market power) flattens aggregate supply, due to forces missing

only in the knife-edge case of exogenously assumed price-setting.

Quantification. To illustrate the plausibility and macroeconomic relevance of these pre-

dictions, we quantify their implications in two simple calculations. We first study the model’s

predictions across time in the United States. We calculate a time-varying slope of aggre-

gate supply using a standard calibration for macroeconomic parameters plus estimates of

time-varying volatility from a simple statistical model. Our quantification implies that the

slope of aggregate supply is relatively flat in normal times but spikes dramatically during

the inflationary episodes of the 1970s and 2020s, consistent with empirical findings (see, e.g.,

Ball and Mazumder, 2011; Cerrato and Gitti, 2022). The key mechanism is that a spike in

inflation uncertainty triggers firms to choose different supply functions, more aggressively

varying prices with realized demand. In a second exercise, we study our model’s implications

for inflation-output tradeoffs across countries in the spirit of Lucas (1973). Our model pre-

dicts vastly heterogeneous slopes of aggregate supply that correlate positively with simple

empirical proxies, but not with realized inflation or inflation volatility. Thus, our model’s

predictions based on relative uncertainties account for variation in the slope of aggregate

supply beyond what is explained by models that tie the slope solely to the level of inflation

and absolute inflation uncertainty.

Related Literature. Our methodological contribution is to derive aggregate supply in

a business-cycle model from a foundation of supply function competition. Supply function

competition has been extensively studied in microeconomic theory, industrial organization,

and finance (e.g., Grossman, 1981; Klemperer and Meyer, 1989; Vives, 2017). We contribute

to this literature by analytically characterizing equilibrium supply functions with several new

features: non-quadratic preferences; imperfect substitutability; multiple, correlated sources

of uncertainty; and general equilibrium interactions in both input and product markets.

The closest analysis in the macroeconomics literature is performed by Reis (2006), who

compares the extremes of price-setting and quantity-setting for a rationally inattentive firm in

partial equilibrium. Our analysis goes beyond Reis’ by studying completely flexible supply
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schedule choice, removing all ad hoc strategic restrictions on firms’ choices, and studying

general equilibrium.1 The latter feature allows us to study the equilibrium relationship

between supply function choice, macroeconomic dynamics, and the slope of aggregate supply.

Our finding that uncertainty shapes the slope of aggregate supply is shared with the

classic “islands model” analysis of Lucas (1972). A shared methodological premise is that

economic agents act on what they learn from endogenous objects. Our results for the slope

of the aggregate supply curve differ substantially for two reasons. First, we study producers

with market power, consistent with modern macroeconomic theory and evidence, instead

of price-taking producers in competitive markets. Second, the inference problem that links

uncertainty to supply decisions in our model arises for a different reason, without reference

to the migration or physically separated markets. Rather, firms use the demand for their

product as a noisy signal to infer their optimal price.

Our work is also distinguished from a literature that has pursued other avenues to recon-

cile Lucas’ insights with non-competitive markets. Unlike Woodford (2003a), which restricts

firms to price-setting, we allow firms to choose flexible schedules. This restores the spirit of

Lucas’ insight that firms can learn from market conditions in rational expectations equilib-

rium. Our analysis also suggests that existing conclusions about the link between information

frictions and monetary non-neutrality are sensitive to strategic restrictions on firms: for ex-

ample, if firms were restricted to set quantities in our model, money would be neutral despite

information frictions. Hellwig and Venkateswaran (2009) share our premise of allowing firms

to learn from demand conditions, but do not study the static fixed point that supply func-

tions generate between firms’ decisions and market information. This two-way feedback is

at the core of our mechanism and our predictions.2

Outline. Section 2 solves for the firm’s optimal supply function in partial equilibrium.

Section 3 introduces a monetary business cycle model with supply functions. Section 4

characterizes equilibrium with supply function choice and shows how supply function choices

affect aggregate supply. Section 5 quantifies the model’s predictions. Section 6 concludes.

2 Supply Function Choice in Partial Equilibrium

In this section, we introduce our model of supply function choice for a single firm making

decisions under uncertainty. We show that supply function choice is formally equivalent

1In Flynn et al. (2024), we study the problem of prices vs. quantities choice in general equilibrium and
draw out implications for monetary policy.

2Lucas and Woodford (1993) and Eden (1994) study markets with ex ante capacity investment and
sequential transactions as a way to model learning from demand conditions. These authors also do not
study the static fixed-point between uncertainty and market information.
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to allowing firms to learn from their demand and update their pricing strategies accord-

ingly. Our main result in this section shows that optimal supply functions are log-linear and

characterizes their slope in terms of firms’ uncertainty and the elasticity of demand.

2.1 The Firm’s Problem

Environment. A firm produces output q ∈ R+ via a constant-returns-to-scale production

technology using a single input x ∈ R+:

q = Θx (1)

where Θ ∈ R++ is the firm’s Hicks-neutral productivity. The firm can purchase the input at

price px ∈ R++. The firm faces a constant-elasticity-of-demand demand curve given by:

p

P
=
( q

Ψ

)− 1
η

(2)

where p ∈ R+ is the market price, Ψ ∈ R++ is a demand shifter, P ∈ R++ is the aggregate

price level, and η > 1 is the price elasticity of demand. We interpret the elasticity of demand

as an (inverse) measure of market power: when η is high, the quantity demanded is more

sensitive to the price. The firm’s profits are priced according to a real stochastic discount

factor Λ ∈ R++. For simplicity, we define the firm’s real marginal cost as M = P−1Θ−1px.

At the beginning of the decision period, the firm is uncertain about demand, costs,

others’ prices, and the stochastic discount factor (SDF). Specifically, they believe that the

state (Ψ,M, P,Λ) follows a log-normal distribution with mean µ and variance Σ. The firm’s

payoff is given by its expected real profits (revenue minus costs), as priced by the real SDF:

E
[
Λ
( p

P
−M

)
q
]

(3)

where E [·] is the firm’s expectation given some joint beliefs about (Λ, P,M,Ψ, p, q).

Supply-Function Choice. The firm implements price-quantity pairs described by the

implicit equation f(p, q) = 0 where f : R2
++ → R. We will refer to f as the supply function.

Price-setting is nested as a case in which f(p, q) ≡ fP (p). Quantity-setting is nested as a case

in which f(p, q) ≡ fQ(q). More generally, we allow plans to be given by any non-parametric

function f , allowing for possible non-monotonicity and discontinuities.

After choosing a supply function f , and following the realization of Ψ and P , the firm

produces at a point where f intersects the demand curve. That is, the market clears. To

formalize this, we define the nominal demand state z = ΨP η and rewrite the demand curve
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as q = zp−η. Thus, having set f and following the realization of z, the firm’s price is given

by some solution p̂ to the equation f(p̂, zp̂−η) = 0 with the realized quantity being q̂ = zp̂−η.

We assume that the firm chooses the profit-maximizing selection from the set of solutions

if there are many and does not produce if there is no solution. Given a supply function f ,

we let H(f) be the induced joint distribution over (Λ, P,M,Ψ, p, q) given the firm’s prior

beliefs. The firm’s problem of choosing an optimal supply function is therefore equivalently

stated as either of the following maximization problems:

sup
f :R2

++→R
EH(f)

[
Λ
( p

P
−M

)
q
]

⇐⇒ sup
p̂(z)

E

[
Λ

(
p̂(z)

P
−M

)
zp̂(z)−η

∣∣∣∣∣z
]

for all z ∈ R+ (4)

While mathematically equivalent, these two formulations of the problem provide two

different economic intuitions for how the firm behaves. Under the first formulation, the

interpretation is that the firm chooses its supply curve ex ante, knowing that it will price

and produce where its supply curve meets the demand curve. This is like the ECON 101

notion of a supply curve as the firm’s plan linking production and prices. Under the second

formulation, the interpretation is that the firm prices in the interim: it is as if the firm sees

the state of its demand, updates its beliefs, and then sets its optimal price. That is, supply

functions allow the firm to condition its price and quantity on the strength of demand.

In Figure 1, we illustrate how different supply functions translate into price-quantity

outcomes. The first row illustrates market clearing by showing different supply functions

intersected with two demand curves, corresponding to “high” and “low” realizations. The

second row illustrates the induced joint distribution of prices and quantities. Panel A shows

a “price-setting” supply function, f(p, q) = 1−p. In this case, a firm responds to low demand

by producing less and responds to high demand by producing more in order to maintain a

fixed price. The “quantity-setting” policy (panel B), f(p, q) = 1 − q, does the opposite:

in this case, the firm aggressively decreases the price of low-demand goods and increases

the price of high-demand goods to fix the quantity sold. The supply function in panel C,

f(p, q) = 1− p
q
, allows both prices and quantities to increase with demand. This describes a

firm with less extreme dynamic pricing: high-demand states have higher prices and volumes,

and low-demand states have lower prices and volumes. In our model, the firm picks the

optimal supply function given its uncertainty about economic conditions.

Interpreting Supply Functions. We argue that there are strong theoretical and empir-

ical grounds to study supply function choice as a benchmark model of firm choice under

uncertainty.

First, the supply function model is consistent with firms’ using all valuable information
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Figure 1: An Illustration of Supply-Function Choice
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Notes: The columns correspond to different supply functions. The top row illustrates ex post market clearing
for two realizations of the demand curve. The bottom curve illustrates the induced joint distribution of
quantities and prices given log-normal uncertainty about z.

revealed by market clearing. This premise is central to the modern paradigm of rational

expectations equilibrium (REE, Lucas, 1972). It is of course possible that firms are hindered

in incorporating this information by ex post costs to adjust quantities and prices, for example

due to technological constraints or nominal rigidities. But, as we further clarify in Section

2.3, any frictions that induce finite adjustment costs are conceptually straightforward to

incorporate into the supply-function model—whereas only infinite adjustment costs on spe-

cific margins can justify the standard models of price-setting and quantity-setting. From

this perspective, the only tenable arguments against allowing for supply functions are that

firms do not learn in the manner required by REE or that adjustments are infinitely costly.

Second, supply function choice does not require that firms commit to plans that are

revealed to be suboptimal by demand conditions. For example, in the typical model of price-

setting, a firm could lose money (to an arbitrary extent) to honor its fixed-price commitment

in a state of the world in which goods are “flying off the shelves.” Our supply function model

can be thought of as formalizing the scenario in which a firm can reconsider its plans after

every realization of demand.

Third, the supply function model decouples “price inertia” from “price stickiness,” but

is not incompatible with the latter. As in other models of aggregate supply based on incom-
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plete information (e.g., Lucas, 1972; Mankiw and Reis, 2002; Woodford, 2003a), our model

predicts that the prices charged by an individual firm change in every period. We adopt this

intentionally extreme view to highlight how the novel mechanisms of our model can translate

“flexible” prices into sluggish responses of the aggregate price level to shocks (see Section

4). Nonetheless, it is conceptually straightforward to extend the model to allow for microe-

conomic price rigidity (see Section 2.3). In this case, the supply functions model still has

appealing theoretical properties relative to the benchmarks of price- and quantity-setting—

no firm regrets its price after observing market clearing—as well as materially different

predictions, upon which we later elaborate and test.

Fourth, as a practical matter, there are many pricing strategies that could be well de-

scribed as supply functions that incorporate information from contemporaneous demand

conditions into prices. This is common for many goods and services that feature “dynamic

pricing,” for example in markets for electricity, gasoline, e-commerce, ride-sharing, and en-

tertainment (see e.g., Den Boer, 2015). Klemperer and Meyer (1989) provide two concrete

examples of firms that de facto implement supply schedules: management consultants who

do not post prices, but instead vary them as a function of the quantity of services pro-

vided, and airlines that use computer software to put seats on discount depending on how

many are currently sold. Crucially, in these examples, firms’ choices do not seem completely

constrained by technological necessity: they could in principle vary prices more or less ag-

gressively depending on what is more profitable. Finally, varying prices with demand is not

a new innovation: negotiated rather than posted prices were the norm throughout human

history until the invention of the price tag in the mid-19th century (Phillips, 2012).

2.2 The Optimal Supply Function

We now study the optimal supply function. The following result characterizes the firm’s

optimal policy in closed form and allows us to illustrate comparative statics in the extent of

uncertainty and the price elasticity of demand.

Theorem 1 (The Optimal Supply Function). Any optimal supply function is almost every-

where given by:

f(p, q) = log p− α0 − α1 log q (5)

where the slope of the optimal price-quantity locus, α1 ∈ R, is given by:

α1 =
ησ2

P + σM,Ψ + σP,Ψ + ησM,P

σ2
Ψ − ησM,Ψ + ησP,Ψ − η2σM,P

(6)

Proof. See Appendix A.1.
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Understanding the Result. To provide intuition for this result, it is helpful to first

sketch its proof. As observed above (Equation 4), the problem of choosing an optimal supply

function ex ante can be recast as a problem of choosing price-quantity pairs (p(z), q(z)) that

are indexed by the realization of the nominal demand state z = ΨP η and are such that the

market clears: (p(z), q(z)) = (p(z), zp(z)−η). Intuitively, when setting a supply schedule, the

firm anticipates that it will produce where the demand curve intersects the supply function.

Thus, as the demand curve is indexed by z, it is as if the firm chooses a z-contingent price-

quantity plan. Importantly, it does so without additional constraints. We emphasize that this

differs from the standard case of price- and quantity-setting due to the lack of constraints and

not the contingency of choices on demand. Under price-setting, firms implement z-contingent

price-quantity pairs of the constrained form (p(z), q(z)) = (p̄, zp̄−η), where p̄ is a fixed price

and zp̄−η is the quantity that clears the market; and similarly, under quantity-setting, firms

implement z-contingent price-quantity pairs of the constrained form (p(z), q(z)) = (z1/η q̄, q̄).

When choosing flexible supply schedules, firms can therefore freely incorporate informa-

tion from the nominal demand state z into their optimal choices. To see this, we note that

a necessary condition for optimality is that, for any given realization z = t, there is no local

benefit to changing the price p(t). Taking a first-order condition at each z = t, we find that

the firm equates the marginal revenue and cost effects of raising the price:

E
[
(η − 1)zΛP−1p(z)−η | z = t

]︸ ︷︷ ︸
Expected revenue effect

= E
[
ηzΛMp(z)−η−1 | z = t

]︸ ︷︷ ︸
Expected cost effect

(7)

This principle of equating expected benefits and costs would apply in a broader class of

models with different production technologies and demand curves (see Section 2.3), although

the specific expressions for these terms in Equation 7 rely on our exact assumptions. Re-

arranging terms, we observe that, for almost all t ∈ R++, the optimal price must satisfy:

p(t) =
η

η − 1

E[ΛM | z = t]

E[ΛP−1 | z = t]
and q(t) = tp(t)−η (8)

This resembles the standard optimality condition for monopolistic price-setting (“markup

over marginal cost”), with the key difference that it conditions on nominal demand z. Out-

comes under optimal rules therefore differ from outcomes under optimal price-setting due

to the firm’s ability to make inferences about the stochastic discount factor, real marginal

costs, and the price level. Finally, we exploit the joint log-normality of the variables in the

firm’s problem to solve Equation 8 for an exact log-linear relationship between prices and

quantities. Without log-normality, Equation 8 could be solved using numerical techniques.

It remains to explain why the optimal inverse supply elasticity takes the form given in
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Equation 6. This specific form arises because α1 is the relative rate at which the firm wants

log prices and log quantities to increase with the nominal demand state log z:

α1 =
d log p

d log z

/
d log q

d log z
=

Cov[log z, log p∗∗]

Cov[log z, log q∗∗]
(9)

where p∗∗ and q∗∗ are the optimal ex post prices and quantities that the firm would set with

full information:

p∗∗ =
η

η − 1
MP and q∗∗ =

(
η

η − 1

)−η
z

(MP )η
(10)

An econometric metaphor illustrates why this is the optimal way to set α1. By Equation

9, the firm’s optimal policy is equivalent to running the following two-stage least squares

(2SLS) regression: the firm estimates how its optimal price should change with its optimal

quantity, using the nominal demand state z as an instrument for the optimal quantity. The

supply function is steep (|α1| is large) if nominal demand predicts large movements in the

ex post optimal price. In the 2SLS metaphor, this corresponds to a large coefficient in the

“reduced form” regression of p∗∗ on z. The supply function is flat (|α1| is small) if nominal

demand predicts large movements in the ex post optimal quantity. In the 2SLS metaphor,

this corresponds to a large coefficient in the “first stage” regression of q∗∗ on z.

The Effects of Uncertainty. A critical determinant of the firm’s optimal responsiveness

of prices to quantities is their relative uncertainty about the price level, real marginal costs,

and demand. To build intuition for this, we first focus on the case in which the firm’s supply

schedule is upward-sloping. This occurs if 0 ≤ Cov[log z, log(MP )] ≤ 1
η
Var[log z]: high

demand predicts that nominal costs are higher, but not too much higher. In this case, greater

price-level uncertainty (σ2
P increases) steepens the optimal supply schedule. Intuitively,

not knowing the prices of your competitors makes more aggressive dynamic pricing (i.e.,

a strategy closer to quantity-setting) attractive because this allows one’s relative price to

adjust ex post. On the other hand, greater demand uncertainty (σ2
Ψ increases) flattens the

optimal supply schedule. Intuitively, demand uncertainty favors a strategy closer to a fixed

price as it allows production to adjust to accommodate greater demand. Finally, greater

covariances between real marginal costs and demand and real marginal costs and the price

level increase the firm’s inverse supply elasticity. Intuitively, when these covariances increase,

the firm expects to produce more exactly when it is more costly. Thus, the firm optimally

sets a steeper supply schedule to avoid over-producing in response to changes in demand.

We finally observe that a positively sloped supply function is not guaranteed: if nominal

costs move sufficiently with nominal demand, then a monopolist may prefer a downward
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sloping supply function in order to hedge against high costs in high-demand states.

The Effect of Market Power. The elasticity of demand plays two roles in determining

the optimal (inverse) elasticity of supply. The first relates to payoffs : when η is high, ex post

optimal quantities are more sensitive to changes in nominal marginal costs (holding fixed

nominal demand). Intuitively, when goods are more substitutable, the firm’s optimal policy

depends dramatically on whether its marginal costs are above or below others’ prices. The

second role relates to information: when η is high, nominal demand contains relatively more

information about the price level P and less about real demand Ψ.

In general, the interaction of these two forces can make the optimal supply function

steepen or flatten when η increases. Below, we describe an intuitive sufficient condition

under which a greater elasticity of demand induces steeper supply:

Corollary 1 (The Elasticity of Demand and Optimal Supply). A sufficient condition for

greater market power to lower the inverse supply elasticity, or ∂α1

∂η
> 0, is that each of the

following three inequalities holds:

α1 ≥ 0, σM,P ≥ 0, 2ησM,P + σM,Ψ ≥ σP,Ψ (11)

Proof. See Appendix A.2.

The force of these conditions is to restrict the extent to which high nominal demand

predicts low marginal costs. In this case, the dominant logic is the following: when demand

is highly sensitive to relative prices, an upward-sloping aggregate supply function better

allows a firm to index its prices relative to its nominal costs. As discussed earlier, this allows

the firm to better hedge its risks from setting the “wrong” price. Later, in our quantitative

analysis (Section 5), we find that the condition of Corollary 1 always holds in US data since

1960 as long as η > 2.5. Thus, the empirically relevant case appears to be that a lower

elasticity of demand flattens firms’ optimal supply function.

Pure Price- and Quantity-Setting Obtain in Extreme Limits. The previous result

makes clear that pure price-setting and quantity-setting are two isolated points in the larger

space of supply functions. Moreover, they are almost never optimal. We observe below that

they are obtained in the limiting cases of extreme demand or price-level uncertainty:

Corollary 2 (A Foundation for Price-Setting and Quantity-Setting). The following state-

ments are true:

1. As σ2
P → ∞, |α1| → ∞ and the optimal plan converges to quantity-setting.

2. As σ2
Ψ → ∞, α1 → 0 and the optimal plan converges to price-setting.

12



Thus, focusing on price- and quantity-setting is justified when and only when one source

of risk is dominant. In a macroeconomic environment, however, we may expect all sources

of risk to be present in comparable orders of magnitude. In such a scenario, the extreme

policies may perform poorly, for both the firm and the economic analyst.

2.3 Supply Functions in Other Environments

We have made many specific assumptions on technology and demand for exposition simplic-

ity. As we will show in the remainder of the paper, these same assumptions will also allow

us to tractably study a general-equilibrium environment with an endogenous feedback loop

between supply-function choice and endogenous uncertainty.

Nonetheless, the basic economic logic of supply-function choice extends to a much broader

class of models. The unifying theme is the observation that choosing supply functions is tan-

tamount to incorporating information regarding the desired price and quantity from market

clearing. This basic observation did not rely on our specific description of technology and

demand. As such, firms’ optimal supply functions in other environments inherit the follow-

ing fundamental logic of Theorem 1: firms want prices to increase steeply in quantities when

high demand predicts a high desired price but not a high desired quantity. Moreover, taking

the perspective of supply functions versus the traditional view of price- or quantity-setting

introduces novel channels through which firms’ uncertainty shapes their choices.

In Appendix B, we illustrate this point by characterizing optimal supply functions in four

extensions that explore different assumptions about real and nominal rigidities. We briefly

summarize all four extensions below.

Multiple Inputs, Decreasing Returns-to-scale, and Monopsony. First, we allow

for a Cobb-Douglas production technology with multiple inputs, decreasing returns to scale,

and convex costs of hiring additional inputs (capturing monopsony). These forces change the

analysis solely by introducing a single composite parameter that aggregates the decreasing

returns and monopsony forces across inputs. We show in Proposition 4 that the optimal

supply function remains optimally log-linear and uncertainty enters in a similar way. De-

creasing returns to scale and monopsony power (that may arise because of adjustment costs

in production, for instance) both reduce the optimal supply elasticity of the firm and push

the firm toward more rigid quantities.

Endogenous Markups. Second, we allow for demand that is not iso-elastic in a class

that separates the firm’s own-price elasticity of demand from the firm’s cross-price elasticity

of demand. We solve for the optimal supply curve in this case in Proposition 5. We show

that uncertainty enters in a similar way but the optimal supply curve ceases to be log-linear
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as the optimal markup is endogenous to the scale of production. Intuitively, this allows the

model to capture the possibility that “goods flying off the shelves” is informative about the

desired markup.

Additional Choice Variables. Third, we allow for the firm to choose additional variables

beyond prices and quantities that may affect the joint distribution of all variables relevant

to the firm, such as marginal costs and demand. One example is a firm that can invest

in improving the quality of its product. We show in Proposition 6 that the firm’s supply

function remains optimally log-linear but with a slope that depends on the uncertainty that

is induced by their choice of additional variables. Using this, we characterize the value of

any choice of additional variables and show in an example how such a firm would optimally

choose the quality of its product at a cost.

Sticky Prices. Fourth, we enrich the firm’s problem with price stickiness as in Calvo

(1983) to capture the empirically relevant possibility that the firm’s prices may be fixed

for multiple periods (Bils and Klenow, 2004). We show in Proposition 7 that the firm’s

supply function remains optimally log-linear but with a slope that depends on how the

firm learns from its demand today about the full future sequence of its nominal marginal

costs. This demonstrates the simplicity with which the supply function approach could be

integrated into macroeconomic models with sticky prices, like the textbook New Keynesian

model (Woodford, 2003a).

3 Supply Functions in a Macroeconomic Model

We now embed supply-function choice in a monetary macroeconomic model. We other-

wise use intentionally standard microfoundations (see, e.g., Woodford, 2003b; Hellwig and

Venkateswaran, 2009). These microfoundations will allow for a closed-form analysis and

highlight the core economics of supply functions without any approximations. In this con-

text, we will be interested in understanding three things: (i) how the microeconomic inverse

supply elasticity maps into the elasticity of aggregate supply, (ii) how equilibrium macroe-

conomic dynamics endogenously influence the optimal microeconomic supply elasticity, and

(iii) how these two channels interact to determine equilibrium macroeconomic dynamics.

3.1 Households

Time is discrete and infinite t ∈ N. There is a continuum of differentiated goods indexed by

i ∈ [0, 1], each of which is produced by a different firm.
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A representative household has standard (Hellwig and Venkateswaran, 2009; Golosov and

Lucas, 2007) expected discounted utility preferences with discount factor β ∈ (0, 1) and per-

period utility defined over consumption of each variety, Cit; holdings of real money balances,
Mt

Pt
; and labor effort supplied to each firm, Nit:

E0

[ ∞∑
t=0

βt

(
C1−γ

t

1− γ
+ ln

Mt

Pt

−
∫
[0,1]

ϕitNit di

)]
(12)

where γ ≥ 0 indexes income effects in both money demand and labor supply and ϕit > 0

is the marginal disutility of labor supplied to firm i at time t, which is an IID lognormal

variable with time-dependent variance, or log ϕit ∼ N(µϕ, σ
2
ϕ,t). The consumption aggregate

Ct is a constant-elasticity-of-substitution aggregate of the individual consumption varieties

with elasticity of substitution η > 1:

Ct =

(∫
[0,1]

ϑ
1
η

itc
η−1
η

it di

) η
η−1

(13)

where ϑit is an IID preference shock that is also lognormal with time-dependent variance, or

log ϑit ∼ N(µϑ, σ
2
ϑ,t). We also define the corresponding ideal price index:

Pt =

(∫
[0,1]

ϑitp
1−η
it di

) 1
1−η

(14)

Households can save in either money or risk-free one-period bonds Bt (in zero net supply)

that pay an interest rate of (1 + it). The household owns the firms in the economy, each of

which has profits of Πit. Thus, the household faces the following budget constraint at each

time t:

Mt +Bt +

∫
[0,1]

pitCit di = Mt−1 + (1 + it−1)Bt−1 +

∫
[0,1]

witNit di+

∫
[0,1]

Πit di (15)

where pit is the price of variety of variety i and wit is a variety-specific nominal wage.

The aggregate money supply follows an exogenous random walk with drift µM and time-

dependent volatility σM
t :

logMt = logMt−1 + µM + σM
t εMt (16)

where the monetary innovation is an IID random variable that follows εMt ∼ N(0, 1). So

that interest rates remain strictly positive, we assume that 1
2
(σM

t )2 ≤ µM for all t ∈ N.
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3.2 Firms

The production side of the model follows closely the model from Section 2. Each consumption

variety is produced by a separate monopolistic firm, also indexed by i ∈ [0, 1]. Each firm

operates a production technology that is linear in labor:

qit = ζitAtLit (17)

where Lit is the amount of labor employed, ζit is IID lognormal with time-dependent volatility

σζ,t, or log ζit ∼ N(µζ , σ
2
ζ,t), and logAt follows an AR(1) with time-varying volatility σA

t :

logAt = ρ logAt−1 + σA
t ε

A
t (18)

where the productivity innovations are IID and follow εAt ∼ N(0, 1). For our main analysis,

we assume that innovations to aggregate productivity and the money supply are independent.

In Appendix C, we generalize our results to allow for arbitrary correlation between these

shocks. When the firm sells output at price pit and hires labor at wage wit, its nominal profits

are given by Πit = pitqit − witLit. Since firms are owned by the representative household,

their objective is to maximize expectations of real profits, discounted by a real stochastic

discount factor Λt. Thus, the firm’s payoff is Λt

Pt
Πit.

At the beginning of time period t, firms first observe At−1 and Mt−1. Firms also receive

private signals about aggregate productivity sAit and the money supply sMit :

sAit = logAt + σA,s,tε
s,A
it

sMit = logMt + σM,s,tε
s,M
it

(19)

where the signal noise is IID and follows εs,Ait , εs,Mit ∼ N(0, 1). Firms are uncertain about the

idiosyncratic productivity shock ζit, demand shock ϑit, and labor supply shock ϕit.
3

3.3 Markets and Equilibrium

In each period, conditional on the aforementioned information set, firms choose a supply

function. As in Section 2, firms make this decision under uncertainty about demand, costs,

and the stochastic discount factor. But, as will become clear, this uncertainty is now partially

about endogenous objects. After firms make their choices, the money supply, idiosyncratic

demand shocks, and both aggregate and idiosyncratic productivity are realized. Finally, the

3It is not important that firms are fully uninformed about these quantities. The model’s predictions
would be identical if firms also received noisy signals about their idiosyncratic shocks.
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household makes its consumption and savings decisions and any prices that were not fixed

adjust to clear the market. Formally, we define an equilibrium as follows:

Definition 1 (Supply-Function General Equilibrium). An equilibrium is a collection of vari-

ables {
{pit, qit, Cit, Nit, Lit, wit,Πit}i∈[0,1], Ct, Pt,Mt, At, Bt, Nt,Λt

}
t∈N

and a sequence of supply functions
{
fit : R2

++ → R
}
i∈[0,1],t∈N such that, in all periods:

1. All firms choose their supply function fit to maximize expected real profits under the

household’s stochastic discount factor.

2. The household chooses consumption Cit, labor supply Nit, money holdings Mt, and bond

holdings Bt to maximize their expected utility subject to their lifetime budget constraint,

while Λt is the household’s marginal utility of consumption.

3. Money supply Mt and productivity At evolve exogenously via Equations 16 and 18.

4. Firms’ and consumers’ expectations are consistent with the equilibrium law of motion.

5. The markets for the intermediate goods, final good, labor varieties, bonds, and money

balances all clear.

We will also often be interested in describing equilibrium dynamics conditional on a

(potentially suboptimal) supply function for firms. Formally, these temporary equilibria are

equilibria in which we do not require statement (1) of Definition 1.

4 Supply Function Choice and Aggregate Supply

We now study the model’s equilibrium predictions, focusing on the equilibrium determination

of the aggregate supply curve. We proceed in three steps. First, we solve for all equilibrium

conditions except for the firm’s supply-function decision. Second, we show that, fixing any

log-linear supply schedule, the economy admits a unique log-linear equilibrium that has a

simple Aggregate Supply and Aggregate Demand representation. The slope of aggregate

supply depends on the slope of firm-level supply, in conjunction with other parameters.

Third, we combine this with our solution for optimal supply schedules from Theorem 1

and fully characterize equilibrium in terms of a single, scalar fixed-point equation for the

firm-level supply elasticity. We study how strategic interactions, the elasticity of demand,

and the combination of microeconomic demand uncertainty alongside aggregate productivity

and monetary uncertainty affect the equilibrium aggregate supply elasticity. Finally, we show

how supply function choice can be tractably incorporated in a larger class of dynamic general

equilibrium models.
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4.1 Firms’ Uncertainty in Equilibrium

We begin by deriving the general-equilibrium analogs of the four objects that were central

to the firm’s problem in Section 2: firm-specific demand shocks, firm-specific marginal costs,

the price level, and the stochastic discount factor. We do so by deriving the household’s Euler

equations for bonds, money, and labor supply. We summarize the results of this below:

Proposition 1 (Firm-Level Shocks in General Equilibrium). In any temporary equilibrium,

demand shocks, aggregate price shocks, stochastic discount factor shocks, and marginal cost

shocks follow:

Ψit = ϑitCt , Pt =
it

1 + it
C−γ

t Mt , Λt = C−γ
t , Mit =

ϕitC
γ
t

zitAt

(20)

where it is a deterministic function of only exogenous parameters that we provide in the

Appendix.

Proof. See Appendix A.3.

Each of these expressions is intuitive given the general equilibrium structure of the model.

First, the firm’s demand shock is the product between its idiosyncratic demand shock and

aggregate demand. Second, the demand for real money balances is decreasing in the interest

rate as this determines the opportunity cost of holding money (which itself depends on the

future path of monetary volatility, the drift of the money supply, and the household’s discount

factor). Moreover, this demand is increasing in the household’s level of consumption because

of an income effect, which is governed by the curvature of consumption utility γ. Intuitively,

when consumption utility has greater curvature, income effects in money demand are larger

and money demand is more responsive to changes in consumption. Thus, consumption

responds less to real money balances when γ is large. Third, the SDF is the marginal

utility of consumption. Finally, the real marginal cost of firms is increasing in the level of

consumption because of the same income effect, and decreasing in their productivity.

The uncertainty the firm faces in light of Proposition 1 concerns endogenous objects.

This introduces strategic uncertainty (i.e., payoff-relevant uncertainty about other firms’

choices).4 Moreover, firms’ uncertainty is correlated across variables due to macroeconomic

linkages in the product, money, and labor markets.

An important technical implication of Proposition 1 is that, if Ct is log-normal, then so

too is (Ψit, Pt,Λt,Mit). This follows from the fact that all four expressions are log-linear

4One interesting implication of Proposition 1 is that nominal wages, wit =
it

1+it
ϕitMt, provide information

only about exogenous objects. A stronger implication is that a model in which firms draw inferences from
both output-market prices and input-market prices has identical predictions to our studied model.
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and all other fundamentals (At,Mt, ϑit, ϕit, zit) are log-normal by assumption. Therefore, if

we can find that Ct is log-normal in equilibrium, our Theorem 1 can be directly applied to

determine the optimal supply function in general equilibrium in our fully non-linear setting.

We will call an equilibrium in which logCt is linear in (logAt, logMt) a log-linear equilibrium.

4.2 From Supply to Aggregate Supply with Fixed Functions

We start by assuming that firms’ exogenously set log-linear supply functions:

log pit = α∗
0t,i(α1,t) + α1,t log qit (21)

where α1,t ∈ R is a fixed parameter and α∗
0t,i(α1,t) is the profit-maximizing “intercept”

conditional on this slope.5 This optimal intercept depends on the slope α1,t, the firm’s

beliefs, and realized demand, but not (independently) on the realized quantity. This has two

purposes. First, this assumption allows us to explore what happens in temporary equilibrium

when firms use a given supply function. This is useful for understanding what strategic

restrictions on firms’ pricing strategies (e.g., exogenously imposing price-setting) imply for

macroeconomic dynamics. Second, this assumption is our guess about what firms’ supply

function will be in equilibrium, which we will later verify as correct. This allows us to

understand the ultimate macroeconomic implications of optimal supply function choice.

Conditional on these supply functions, we guess and verify that there exists an equilibrium

in which aggregate consumption and the price level are log-linear in aggregate shocks:

logPt = χ0,t(α1,t) + χA,t(α1,t) logAt + χM,t(α1,t) logMt

logCt = χ̃0,t(α1,t) + χ̃A,t(α1,t) logAt + χ̃M,t(α1,t) logMt

(22)

To this end, we define the posterior weight on firms’ signals of productivity and the aggregate

money supply as, respectively, κA
t =

(
1 +

(
σA,s,t/σ

A
t

)2)−1

and κM
t =

(
1 +

(
σM,s,t/σ

M
t

)2)−1

.

Moreover, define the slope of supply functions in terms of log zit = η logPt + logΨit as:
6

ω1,t =
α1,t

1 + ηα1,t

(23)

We now characterize equilibrium macroeconomic dynamics with fixed supply functions.

We show that macroeconomic dynamics in log-linear general equilibrium are equivalent to

5We will later verify that all firms use a common slope in equilibrium. In light of Theorem 1, this is
because all firms are exposed to uncertainty in the same way.

6So everything remains well defined, we will impose that ω1,t ̸= (η − 1/γ)(1 − κx
t ) for x ∈ {A,M}. Our

analysis verifies that these values of ω1,t cannot occur in log-linear equilibrium (see the proof of Theorem 3).
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those that would be generated by an Aggregate Demand and Aggregate Supply (AD/AS)

model, in which productivity shocks shift the AS curve and money shocks shift the AD curve.

Critically, the slope of aggregate supply depends on the slope of firms’ supply schedules.

Theorem 2 (Equilibrium and AD/AS Representation). There is a unique log-linear tempo-

rary equilibrium. The behavior of aggregate prices and output in this temporary equilibrium

is equivalent to that generated by the following “Aggregate Demand/Aggregate Supply” model:

logPt = log

(
it

1 + it

)
− ϵDt log Yt + logMt (AD)

logPt = log P̄t + ϵSt log Yt + δt logAt (AS)

where the inverse supply and demand elasticities are given by:

ϵSt = γ
κM
t + ω1,t

γ
(1− κM

t )

(1− ω1,tη)(1− κM
t )

and ϵDt = γ (24)

and the interest rate it, the intercept for the price level log P̄t, and the partial equilibrium

effect of productivity shocks δt do not depend on (logPt, log Yt, logMt, logAt).
7

Proof. See Appendix A.4.

In this representation, the aggregate demand curve combines the Euler equations for

money and bonds with the transversality condition and implies that: (i) the interest rate is

a function of exogenous parameters and (ii) aggregate consumption has an elasticity of 1/γ

to changes in real money balances. The slope (or inverse elasticity) of aggregate demand in

our model is γ. The aggregate supply curve describes the equilibrium relationship between

aggregate output and aggregate prices by aggregating firms’ microeconomic pricing and

production decisions conditional on a fixed inverse supply elasticity.

We illustrate this representation in Figure 2. An “aggregate demand shock,” an increase

of the money supply by logM1 − logM0 = ∆ logM > 0, shifts up the AD curve. This has

an effect of ∆logM
ϵD+ϵS

on real output and ϵS ∆logM
ϵD+ϵS

on the price level. The price effect is larger

and the quantity effect is smaller if ϵS is large. This calculation also makes clear that ϵS is

the relative effect of an aggregate demand shock on the price level versus real output.

The Propagation of Demand Shocks. To obtain more intuition for the propagation of

shocks via firms’ supply schedules, we expand the response of the price level to a money shock

7See Appendix A.4 for explicit formulae for these terms.
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into a partial equilibrium effect and a series of higher-order general equilibrium effects:8

∆ logP

∆ logM
=

ϵSt
ϵDt + ϵSt

=

(
κM
t +

ω1,t

γ
(1− κM

t )

)
︸ ︷︷ ︸

Partial Equilibrium

×
∞∑
j=0

(
ω1,t

(
η − 1

γ

)
(1− κM

t )

)j

︸ ︷︷ ︸
General Equilibrium

(25)

It is first helpful to understand the case of pure price-setting (ω1,t = 0). In this case, an

increase in M by 1% raises real money balances by 1%, which increases consumption demand

by 1/γ%. From the households’ labor supply condition, this increases real marginal costs

by γ × 1/γ = 1%. As the firm wishes to set its relative price equal to a constant mark-up

over real marginal costs, the direct partial equilibrium effect of the shock is for the firms

to increase prices by 1%. Next, in general equilibrium (i.e., accounting for the effect of the

shock on the aggregate price level), the 1% increase in the price level induces a given firm to

increase prices by 1%. However, higher prices also reduce real consumption demand, which

lowers marginal costs by γ × 1/γ%. Thus, the general equilibrium effects net out, and an

increase in M increases prices one-for-one. Finally, when firms are imperfectly informed of

the money supply, they perceive that real marginal costs increase by only κM
t % on average.

Thus, the price level increases by κM
t %, which is obtained in Equation 25 by setting ω1,t = 0.

Consider now the case with general supply functions. A 1% increase in the money supply

induces the firm to experience a 1/γ% demand shock. As the firm has an inverse supply

elasticity of ω1,t, this leads to an additional effect in which the firm increases prices by

ω1,t/γ%. In order to keep its mark-up over real marginal costs fixed, firms reduce prices

by κM
t × ω1,t/γ% on average (via their intercept), which is their perceived increase in their

demand following an increase in the money supply. Thus, the partial equilibrium (PE) effect

involves an addition term relative to the case of pure price setting, given by ω1,t(1− κM
t )/γ.

With supply functions, there are also general equilibrium effects: a 1% in the aggregate

price level leads all firms to experience a demand shock of η% (as the prices of their com-

petitors have increased). But it also reduces real consumption demand by 1/γ%, since

real money balances fall. Together, these effects lead firms to increase their prices by

ω1,t × (η − 1/γ)%. To keep the markup over their nominal marginal cost constant, firms

reduce prices by κM
t ×ω1,t× (η−1/γ)% on average, which is their perceived increase in their

demand. In total, out of a monetarily induced 1% increase in the aggregate price level, the

average increase in firms’ prices is therefore ω1,t × (η − 1/γ)× (1− κM
t )%. Iterating this to

8This expression is derived by multiplying the numerator and denominator of ϵSt /(ϵ
D
t + ϵSt ) by

(1 − ω1,tη)(1 − κM
t ) and expanding it into a geometric summation. The summation only converges

when
∣∣ω1,t (η − 1/γ) (1− κM

t )
∣∣ < 1. Our fixed point arguments establish that the claimed formulae hold

more generally whenever
∣∣ω1,t (η − 1/γ) (1− κM

t )
∣∣ ̸= 1. The proof of Theorem 3 shows the final case of∣∣ω1,t (η − 1/γ) (1− κM

t )
∣∣ = 1 cannot happen in equilibrium.
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Figure 2: An Aggregate Supply and Demand Representation
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Notes: An aggregate supply and demand illustration of dynamics after a shock of size ∆ logM to the money
supply (see Theorem 2).

all subsequent price increases in GE yields Equation 25.

A novel implication of our model is that the extent of general-equilibrium strategic

complementarity hinges critically on the slope of the supply function. Starkly, general-

equilibrium interactions would be entirely absent (i.e., pricing decisions would be neither

complements nor substitutes) if price-setting (ω1,t = 0) were exogenously assumed: the PE

effect would be κM
t % and the GE effect would be 0%. Through this lens, predictions for

complementarity in benchmark price-setting (Woodford, 2003a) and quantity-setting (An-

geletos and La’O, 2010) models are joint predictions of the economic environment and an

exogenous restriction on firms’ strategy space.

The Propagation of Supply Shocks. While our study is primarily focused on predic-

tions for the aggregate supply curve and transmission of demand shocks, our model also

makes predictions for the transmission of supply shocks. In the AD/AS representation, a

positive shock to logAt corresponds to an outward shift of the AS curve, which raises real

output and lowers the price level. While the relative effect on the price level and on real

output is ϵD = γ, the level of these responses varies with the slope of supply functions, ω1,t.

To understand the reason for this, we can, just as above, decompose the effect into partial

and general equilibrium components:

∆ logP

∆ logA
= − κA

t︸ ︷︷ ︸
PE

×
∞∑
j=0

(
ω1,t

(
η − 1

γ

)
(1− κA

t )

)j

︸ ︷︷ ︸
GE

(26)
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The PE effect is immediate: firms perceive a κA
t % decrease in their real marginal costs and

adjust their prices by an equal percentage. The GE effects of the change in the price level

are identical to those under monetary shocks, other than that productivity uncertainty may

differ from monetary uncertainty. Thus, strategic interactions are attenuated by a factor of

1 − κA
t rather than 1 − κM

t . In sum, a key takeaway from our analysis is that the general

equilibrium transmission of shocks crucially depends on the slopes of microeconomic supply

curves in the economy.

4.3 The Slope of Aggregate Supply in Temporary Equilibrium

We now study how various microeconomic forces affect the slope of aggregate supply.

Corollary 3 (How Microeconomic Forces Affect Aggregate Supply). If firms’ supply curves

are upward-sloping (i.e., ω1,t ∈ [0, 1/η)), then the following statements are true:

1. Steeper microeconomic supply steepens the AS curve: ∂ϵSt
/
∂ω1,t ≥ 0.

2. Precision of private information about money steepens the AS curve: ∂ϵSt
/
∂κM

t ≥ 0.

3. Income effects steepen the AS curve: ∂ϵSt
/
∂γ ≥ 0.

4. A higher elasticity of demand steepens the AS curve: ∂ϵSt
/
∂η ≥ 0.

Proof. Follows immediately from differentiation of Equation 24.

To understand the first statement, observe that a steeper microeconomic supply function

makes prices more responsive to realized quantities ex post. At the aggregate level, this

implies that the price level is also more responsive to changes in output. Second, more

precise private information about the money supply steepens the AS curve because firms

respond to the perceived increase in the money supply by increasing average prices (as

modulated through the intercept α∗
0t,i). This reduces variation in real money balances,

thereby attenuating the effect of demand shocks on aggregate output. Third, output responds

less to money balances the higher is γ (see Proposition 1). Consequently, a higher γ steepens

the AS curve.

Finally, a lower elasticity of demand flattens the AS curve. Crucially, this effect is non-

zero if and only if ω1,t ̸= 0, i.e., firms do not undertake pure price-setting. This flattening

operates through the general equilibrium transmission mechanisms of the model. When other

firms raise their prices in response to a money supply shock, firm-level demand increases

because the firm’s relative price is now lower. The magnitude of this demand change is

exactly parameterized by the elasticity of substitution η. If the responsiveness of prices to

quantities at the firm level is non-zero, this demand increase generates an additional price

level response. Consequently, higher market power flattens the AS curve by lowering the
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Figure 3: Aggregate Supply Under Price-Setting and Quantity-Setting

(a) Price-Setting (ω1,t = 0)
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(b) Quantity-Setting (ω1,t = 1/η)
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Notes: An aggregate supply and demand illustration of dynamics after a shock of size ∆ logM to the money
supply (see Theorem 2) under price-setting (panel a) and quantity-setting (panel b).

responsiveness of firm-level prices to relative price changes. This prediction is opposite to

the prediction that Woodford (2003b) obtains: in a New Keynesian model with decreasing

returns to scale, the slope of the Phillips curve is lower when demand is more elastic.9

Aggregate Supply Under Price-Setting and Quantity Setting. We can illustrate

some of these effects even more sharply by describing the slope of aggregate supply under the

common assumptions of pure price-setting and quantity-setting. We find that the aggregate

supply curve is vertical under quantity-setting and maximally flat under price-setting:

Corollary 4 (Aggregate Supply Under Price- and Quantity-Setting). If firms engage in

price-setting (ω1,t = 0), then:

ϵSt = γ
κM
t

1− κM
t

(27)

If firms engage in quantity-setting (ω1,t =
1
η
), then:

ϵSt = ∞ (28)

We illustrate these two “extreme” predictions for aggregate supply and demand in Figure

3. Since ϵSt is increasing in ω1,t, the price-setting case provides a lower bound on the inverse

elasticity of the aggregate supply curve (among all upward sloping supply functions) and

therefore maximizes the real effects of demand shocks. Moreover, as mentioned above, the

9Moreover, the interaction between market power and the slope of aggregate supply arises for completely
different reasons. In the New Keynesian model, the logic is that: when demand is very elastic, higher prices
translate to much lower quantities and, under decreasing returns, much lower marginal costs. This dampens
the desired price change in response to a nominal cost shock.
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slope is invariant to the elasticity of demand only in this case. The case of price-setting

recovers the aggregate supply elasticity of Lucas (1972) with the same insight that more

precise information about the money supply leads to a steeper aggregate supply curve.

In sharp contrast, the AS curve is vertical under quantity-setting and money has no real

effects. This is not a foregone conclusion, but an equilibrium result. Indeed, quantity-setting

firms could condition their production on their monetary signal and money would have real

effects if they did so. As a simple example, setting log qit = sMit is feasible for firms and

this would imply that money has real effects: Ct ∝ Mt. The second part of Corollary 4

follows from the fact that if firms set quantities, then there is no equilibrium in which firms’

quantities depend on the monetary signal.

These results emphasize that the kinds of strategies firms use have large macroeconomic

consequences. It may be unappealing that the choice of the economic analyst about what

kinds of strategies firms use has such large macroeconomic implications. A key benefit of the

supply functions approach is that it allows the analyst to avoid imposing such restrictions

and the potentially unintended consequences for macroeconomic predictions that follow.

4.4 The Equilibrium Slope of Aggregate Supply

We now endogenize the firm-level inverse supply elasticity as a best response to equilibrium

macroeconomic dynamics. We have verified that if firms use log-linear supply functions, then

aggregate dynamics are endogenously log-linear (by Theorem 2). Moreover, we have verified

that if aggregate dynamics are log-linear, then firms’ uncertainty is endogenously log-normal

(by Proposition 1). Thus, we have shown that firms’ supply curves are endogenously log-

linear in a log-linear equilibrium (by Theorem 1). By combining these results, we reduce the

determination of log-linear equilibrium in the full dynamic economy with functional supply

decisions by firms to a single, scalar fixed-point equation for the slopes of supply functions:

Theorem 3 (Equilibrium Supply Elasticity Characterization). All (and only all) solutions

ω1,t ∈ R of the following equation correspond to transformed inverse supply elasticities in

log-linear equilibrium:

ω1,t = Tt(ω1,t) ≡

(η− 1
γ )κA

t

1−ω1,t(η− 1
γ )(1−κA

t )
(σA

t|s)
2 +

1
γ
+(η− 1

γ )κM
t

1−ω1,t(η− 1
γ )(1−κM

t )
(σM

t|s)
2

σ2
ϑ,t +

(
(η− 1

γ )κA
t

1−ω1,t(η− 1
γ )(1−κA

t )

)2

(σA
t|s)

2 +

(
1
γ
+(η− 1

γ )κM
t

1−ω1,t(η− 1
γ )(1−κM

t )

)2

(σM
t|s)

2

(29)

where
(
σA
t|s

)2
= (1− κA

t )
(
σA
t

)2
and

(
σM
t|s

)2
= (1− κM

t )
(
σM
t

)2
.

Proof. See Appendix A.5.
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This fixed-point equation incorporates the variances and covariances that enter the op-

timal supply function as a function of equilibrium macroeconomic dynamics when firms use

supply functions with transformed inverse supply elasticities ω1,t. This depends on the re-

sponsiveness of aggregate prices and output to aggregate productivity and monetary shocks

as well as the conditional uncertainty about these shocks when firms set their supply func-

tions. Firms’ idiosyncratic uncertainty about demand matters, but firms’ uncertainty about

idiosyncratic productivity and factor prices does not, as the variance of marginal costs per

se does not matter for the choice of an optimal supply function.

This result makes clear that our model has different implications than those that study

monetary non-neutrality with endogenous information acquisition. In our model, firms learn

via the endogenous signals produced by the market mechanism. This differs from the premise

of rational inattention models, wherein firms have unrestricted access to information but

can only process it at a cost. This difference in information structures drives significant

differences in results. In the rational inattention model of Maćkowiak and Wiederholt (2009),

for example, any increase in idiosyncratic uncertainty lowers the responsiveness of prices

to aggregate shocks. In our model, idiosyncratic productivity and cost uncertainty are not

directly relevant for the slope of aggregate supply, whereas idiosyncratic demand uncertainty

is directly relevant. Moreover, in our framework, the slope of aggregate supply depends on

whether aggregate uncertainty is driven by real or nominal shocks. Thus, the information

that arises endogenously through the market mechanism (firms’ observation of their demand)

is fundamentally different from the information that firms are restricted to obtain under

existing models of costly information acquisition with price-setting firms.

In the remainder of this section, we will study this equation to understand equilibrium

dynamics. First, we can use this result to establish log-linear equilibrium existence and

provide a bound on the number of equilibria by rewriting the fixed-point equation as a

quintic polynomial in ω1,t:

Proposition 2 (Existence and Number of Equilibria). There exists a log-linear equilibrium.

There exist at most five log-linear equilibria.

Proof. See Appendix A.6

To understand why there are possibly multiple equilibria, let us compare two situations:

one where firms set flat supply functions and one where firms set steep supply functions.

If firms set steep supply functions, then prices are highly sensitive to demand, and so the

aggregate supply curve is steep (recall Theorem 2). Conversely, if firms set flat supply func-

tions, then the aggregate supply curve is flat. When the economy is hit by larger monetary

shocks than productivity shocks, an economy with a steeper aggregate supply curve will
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generate greater variability in the aggregate price level. Moreover, greater variability in the

aggregate price level leads to large losses from price-setting behavior and thus leads to firms

wanting to set steeper supply functions (recall Theorem 1). Because of this, there can exist

a feedback mechanism whereby steeper supply functions can generate greater equilibrium

price volatility, which in turn reinforces the benefits of setting a steeper supply function.

If this feedback mechanism is sufficiently strong, then there may exist multiple equilibria.

Appendix D.4 provides a quantitative illustration of the potential multiplicity of equilibria.

We now study how uncertainty, strategic interactions, and market power shape the ag-

gregate supply elasticity in equilibrium.

A Simple Characterization Under Balanced Strategic Interactions. We first char-

acterize the slope of aggregate supply under the parametric condition ηγ = 1. Recall from

our discussion in Section 4.2 that η parameterizes the strength of strategic complementarities :

the additional increase in demand a firm faces from an increase in the aggregate price level

due to a change in relative prices. In contrast, 1/γ parameterizes the strength of strategic

substitutabilities : the reduction in demand a firm faces from an increase in the aggregate

price level due to a reduction in aggregate consumption (that results from the reduction in

real money balances). Hence, ηγ = 1 corresponds to the case in which these forces exactly

balance. This allows us to simplify the fixed point in Equation 29 considerably.

Corollary 5 (Idiosyncratic vs. Aggregate Demand Uncertainty). When ηγ = 1, the unique

inverse elasticity of aggregate supply is

ϵSt = γ
κM
t

1− κM
t

(
1 +

1

γ2ρ2tκ
M
t

)
(30)

where ρt =
σϑ,t

σM
t|s

is the relative uncertainty about demand vs. the money supply.

Proof. See Appendix A.7

First, observe that uncertainty about aggregate productivity does not enter the slope of

aggregate supply when ηγ = 1. This is because a perceived increase in aggregate productivity

induces all firms to decrease their prices. In the absence of additional strategic interactions,

firms will not respond to other firms’ price reductions. Hence, the demand state z (Equation

8) is not useful for conducting inference about productivity and so κA
t does not enter the

fixed point. The same is not true for uncertainty about the money supply, as it induces

direct variation in the demand state z by changing aggregate consumption through real

money balances. Consequently, firms can condition on the demand state z to learn about

their nominal marginal costs when the money supply is uncertain.
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Second, as ρt → ∞, the inverse elasticity of aggregate supply approaches γ
κM
t

1−κM
t
. This

is the AS curve slope under price-setting (ω1,t = 0). Intuitively, idiosyncratic demand

conditions do not affect a given firm’s marginal cost. Hence, as idiosyncratic demand becomes

relatively more volatile, the firm optimally sets a constant price to keep its markup over

marginal cost constant. Had the firm chosen ω1,t ̸= 0, the firm would induce unprofitable

variation in its price by responding to idiosyncratic demand conditions.

Third, as ρt → 0, the inverse elasticity approaches infinity. Consequently, aggregate

supply is perfectly inelastic and money has no real effects on output. This is the AS curve

that arises from quantity-setting (ω1,t = 1
η
). Intuitively, as uncertainty about the money

supply—and therefore the aggregate price level—increases, firms find it optimal to keep

their quantities constant and let their relative price adjust to demand.

This discussion highlights that relative uncertainty about idiosyncratic vs. aggregate

demand shocks is a crucial determinant of the slope of aggregate supply. Moreover, this

feature only becomes relevant once firms are allowed to optimally choose their supply func-

tions. As Corollary 4 demonstrates, if one were to exogenously impose price-setting or

quantity-setting, the slope of aggregate supply is independent of any feature of idiosyncratic

or aggregate uncertainty other than the signal-to-noise ratio for the money supply.

Thus, supply function choice implies, as a positive matter, a thorny trade-off for monetary

policymakers. If the central bank wishes to maintain the discretion to surprise private agents

via its policy actions, this will increase uncertainty about the money supply. In turn, this

will steepen the equilibrium aggregate supply curve and make money less effective in guiding

real economic outcomes. Therefore, maintaining monetary policy discretion may be, at least

partially, self-defeating.

Equilibrium Under Dominant-Uncertainty Limits. To better understand how each

source of uncertainty matters, we next characterize how equilibria behave as each source of

uncertainty becomes dominant.10 These results hold for any values of η > 1 and γ > 0, in

contrast to the analysis above under balanced strategic interactions.

Corollary 6 (Dominant-Shock Limits). The following statements are true:

1. As σϑ,t → ∞, in any equilibrium ω1,t → 0 (price-setting)

2. As σM
t|s → ∞, in any equilibrium ω1,t → 1

η
(quantity-setting)

3. As σA
t|s → ∞ and ηγ ̸= 1, in any equilibrium ω1,t → 1

η− 1
γ

Proof. See Appendix A.8

10Formally, we take these limits for σx
t|s and x ∈ {M,A} by scaling σx,s,t and σx

t by a common factor.
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The intuition for this result mirrors that of Corollary 5. As idiosyncratic uncertainty

about demand becomes dominant, firms find it optimal to set prices to keep their markup

over real marginal costs constant. As prior uncertainty about the money supply becomes

dominant, firms become more uncertain about the aggregate price level. Consequently, firms

find it optimal to set quantities and let their relative prices adjust to meet demand. Finally,

as uncertainty about aggregate productivity becomes dominant, firms use the demand state

z to make inferences solely about the realization of aggregate productivity. Under perfect

information, a 1% decrease in productivity would imply that firms raise their prices by

1%. This translates to an (η − 1
γ
)% increase in demand for a given firm. Since firms

believe that all fluctuations in demand are driven by productivity shocks, they set their

optimal supply function slope to ω1,t =
[
1/(η − 1

γ
)
]
. This ensures that a 1% increase in

productivity will reduce prices by 1%, thus keeping their mark-up over nominal marginal

costs constant. Observe that this force implies a downward-sloping supply curve whenever

ηγ < 1. Intuitively, if ηγ < 1, income effects in labor supply are weak and the firm expects

a lower real marginal cost after a positive demand shock.

The (Absent) Role of Total Uncertainty. We have so far seen that the nature of

uncertainty (idiosyncratic vs. aggregate and demand vs. productivity) matters. Thus, the

presence of uncertainty is of central importance to our analysis. However, a distinguishing

feature of the theory that we have developed is that the total level of uncertainty does not

matter. To make this claim formal, fix a scalar λ ≥ 0 and scale all uncertainty in the

economy according to:

(σϑ,t, σz,t, σϕ,t, σA,t, σA,s,t, σM,t, σM,s,t) 7→ (λσϑ,t, λσz,t, λσϕ,t, λσA,t, λσA,s,t, λσM,t, λσM,s,t) (31)

In this sense, λ is a measure of the total level of uncertainty faced by firms. Define the

correspondence ES
t : R+ ⇒ R̄, where ES

t (λ) is the set of equilibrium inverse supply elasticities

for the level of uncertainty λ. We observe the following:

Proposition 3 (Invariance to Uncertainty and Discontinuity in the Limit). For λ > 0,

ES
t (λ) is constant and the equilibrium supply elasticity is invariant to the level of uncertainty.

Moreover, ES
t (0) = {∞}. Therefore, the equilibrium supply elasticity is discontinuous in the

zero uncertainty limit:

lim
λ→0

ES
t (λ) ̸= ES

t (0) (32)

Proof. See Appendix A.9

There are two important implications of this result. First, the total level of uncertainty

does not matter for the slope of the aggregate supply curve. This constitutes a significant
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difference between our model and models with menu costs. Concretely, in menu cost models,

any increase in uncertainty regarding the optimal reset price raises firms’ private benefits of

price flexibility without affecting the private costs, which are assumed to be fixed. Thus,

increases in uncertainty lead to more variable prices at the micro level and more monetary

neutrality at the macro level. By contrast, in our model, the level of uncertainty does not

matter—only the relative magnitudes of uncertainty matter. One important implication

of this difference is that idiosyncratic productivity uncertainty has no effect on the slope

of aggregate supply in our model, while it would steepen aggregate supply in menu cost

models that share our primitive economic assumptions on preferences and technology (such

as Golosov and Lucas, 2007). Another important implication is that while idiosyncratic

demand variation flattens aggregate supply in our model, it would have no effect in these

menu cost models.

Second, the slope of the aggregate supply curve is discontinuous in the zero uncertainty

limit. Indeed, ES
t (λ) is typically neither upper hemi-continuous nor lower hemi-continuous

at λ = 0. Thus, even a vanishingly small level of uncertainty can have significant effects

on firm and aggregate behavior. This again represents a substantial difference to menu

cost models, in which a small level of uncertainty has small effects on aggregate behavior

and not the discontinuity that our model generates.11 Importantly, this means that even

in environments with low levels of uncertainty, the economic mechanisms that underlie our

analysis are unchanged.

4.5 A General Framework for Macroeconomic Analysis

Our preceding analysis tractably illustrated the effect of supply functions in a fully non-linear

fashion. To do so, we made a number of simplifying assumptions on utility and the nature

of firms’ production functions. However, we emphasize that our analysis can readily be

extended to general linearized macroeconomic environments of the kind that are commonly

studied in both state-of-the-art theoretical and quantitative work (see e.g., McKay and Wolf,

2023). We now describe a general class of models in which the study of supply functions is

tractable. We note that this is not meant as being exhaustive of the set of models in which

supply functions are tractable or reasonable macroeconomic models.

Consider a model which generates a demand function for products given by qi,t =

d(pit, z
D
it ), where the random variable zDit can depend on other, potentially endogenous vari-

ables of the model as well as exogenous stochastic processes. Assume further, in this dynamic

setting, that the forward-looking value function V that the firm derives from setting a price

11Similarly, models with information acquisition and nominal rigidities (Afrouzi et al., 2024) are also
different from our model in that they do not feature this discontinuity in the limit.
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pit and selling a quantity qit is given by V (pit, qit, z
V
it ), where z

V
it is an nV -sized vector of (po-

tentially endogenous) variables that affect firm’s value at time t. Candidate modifications

to our framework that could be incorporated in this fashion include decreasing returns-

to-scale, monopsony, endogenous markups, price stickiness, investments, and endogenous

quality choice (see Appendix B).

As in our model from Section 2, the firm’s optimal supply function problem is to choose

a price that is contingent on demand qit. As we have shown, this is further equivalent to

choosing a price contingent on the demand state zDit . That is, for each state realization zDit ,

the firm chooses a price pit that maximizes the conditional expected value

pit(z
D
it ) = argmax

pit

Eit[V (pit, d(pit, z
D
it ), z

V
it )|zDit ] (33)

where we have substituted firms’ demand into the value function. We now consider a log-

linear approximation around a deterministic steady state of this model, using hats to denote

log deviations. The approximated policy function must evidently satisfy

p̂it = ω̃′
1,itEit

[
ẑVit |ẑDit

]
(34)

for some nV -sized vector ω̃1,it. Under the assumption that the shocks ẑVit and ẑDit are normally

distributed, optimal prices can further be written as

p̂it = ω1,itẑ
D
it (35)

for some scalar ω1,it. The coefficients ω1,it, the slopes of firms’ supply functions in their

demand states, then determine the motion for the economy’s log-linearized ideal price index

when averaged across firms, i.e., P̂t =
∫ 1

0
p̂it di. This concludes the “firm block” of the model.

Following McKay and Wolf (2023), we assume that the aggregate dynamics of our econ-

omy can be summarized as

Hxx+Hεε = 0 (36)

where xt is an nx-dimensional vector of endogenous variables (such as the ideal price index

P̂t), εt is an nε-dimensional vector of Gaussian structural shocks, and Hz and Hε are con-

forming matrices.12 Equation 36, for example, contains the relevant first-order conditions

and market-clearing conditions that determine the dynamics of an economy. Of course, the

matrices Hx and Hε are dependent on firms’ supply functions through the scalars ω1,it.

12Following McKay and Wolf (2023), we use boldface notation to stack the time paths for all variables
(e.g. x = (x′

1, . . . ,x
′
nx
)′). The matrices Hx and Hε are conformable matrices that map bounded sequences

to the space of bounded sequences.
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Given ω1,it, we can solve for the equilibrium dynamics of the system summarized by

Equation 36. Our additional “rational expectations” restriction then imposes that the value

of ω1,it is consistent with the equilibrium law of motion for prices given by Equation 34. As

argued by McKay and Wolf, many of the parametric structural models commonly used for

counterfactual analysis fit into the general framework of Equation 36. Our supply function

approach simply asserts that the coefficients Hx and Hε are consistent with the information

underlying firm decision-making. We thus argue that supply functions can be embedded

and studied within a general class of commonly used macroeconomic models. Validating the

utility of this approach, Nikolakoudis (2024) incorporates supply functions along the input

margin in a production network economy using these methods.

5 Quantification

In this final section, we quantify our model’s implications for inflation-output tradeoffs.

In particular, we compute the model’s predictions for the slope of aggregate supply as a

function of state-dependent uncertainty. In the United States, aggregate supply dramatically

steepens during the 1970s and post-Covid crisis, consistent with empirical evidence (Ball

and Mazumder, 2011; Hazell et al., 2022; Cerrato and Gitti, 2022). Across countries, relative

uncertainty can help account for the vast and well-documented differences in the relationship

between inflation and real outcomes (Lucas, 1973; Ball et al., 1988).

5.1 Methods

Our goal is to calculate the model-implied elasticity of aggregate supply and compare this

to empirical evidence. To do this, we use Theorems 1 and 2 to write the slope of aggregate

supply in terms of three parameters as well as sufficient statistics summarizing uncertainty

about endogenous variables. That is,

ϵ̂St = γ
κM + α̂1,t

γ(1+ηα̂1,t)
(1− κM)

(1− ηα̂1,t

1+ηα̂1,t
)(1− κM)

where α̂1,t =
ησ̂2

P,t + σ̂M,Ψ,t + σ̂P,Ψ,t + ησ̂M,P,t

σ̂2
Ψ,t − ησ̂M,Ψ,t + ησ̂P,Ψ,t − η2σ̂M,P,t

(37)

where the σ̂·,t denote period-by-period uncertainty about demand shifters Ψ, the price level

P , and real marginal costs M.

Our approach is to calibrate (γ, η, κM) and directly measure the uncertainties. Com-

pared to the alternative of structurally estimating all of the model’s deep parameters and

the stochastic processes for all exogenous shocks, this approach has two main benefits. First,

there is a relatively simple mapping from data to theory. In particular, our estimation of
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firms’ supply function slopes is independent of the general equilibrium “block” of the econ-

omy and relies only on firms’ beliefs about payoff-relevant variables. Second, we bypass the

theoretically possible issue of multiple equilibria: our calculations are valid in the model

regardless of whether measured uncertainty is due to variation in fundamentals or due to

equilibrium selection. A limitation is that the method precludes us from studying counter-

factuals in which, for example, firms’ uncertainty endogenously responds to policy changes.

We leave this kind of counterfactual analysis to future work. Nevertheless, in Appendix D.4,

we outline a method for counterfactual analysis and provide further intuition for when the

fixed point of Theorem 3 may feature multiple equilibria.

Structural Parameters. The period length controls the decision horizon of the firm. We

set this to one quarter to be consistent with findings in US micro data that the duration of the

median posted price is four months (Bils and Klenow, 2004). The elasticity of substitution

between goods, η, controls the elasticity of demand faced by firms and, therefore, the relative

importance of nominal and real shocks for the firm (see Corollary 1). We calibrate η = 8

to match the own-price elasticities of demand estimated by Hottman et al. (2016) using

retail scanner data in the United States. The parameter γ controls the elasticity of real

marginal costs to real output. We set γ = 0.11 to match the estimates of Gagliardone et al.

(2023), who use micro-data from Belgian firms to estimate the elasticity of real marginal

costs to output. The precision of firms’ signals about the money supply, summarized by the

signal-to-noise ratio κM , shifts the average slope of aggregate supply. We calibrate this to

match an average aggregate supply slope of 0.11 as estimated by Hazell et al. (2022), yielding

κM = 0.29. This allows us to isolate all time variation in the slope of aggregate supply as a

consequence of time-varying uncertainty.

Uncertainty. The crucial remaining ingredient is firms’ uncertainty about demand, aggre-

gate prices, and real marginal costs. To our knowledge, there are no datasets that directly

measure firms’ multidimensional uncertainty about these objects over a long period of time.

Therefore, we proxy for firms’ subjective uncertainty using a simple statistical model. Specifi-

cally, we use quarterly data on real GDP, inflation (GDP deflator), and capacity-utilization-

adjusted TFP from 1960 Q1 to 2024 Q4. Using the model’s structure, we construct the

aggregate component of real marginal costs as Mt = Y γ
t /At, where Yt is real GDP, γ = 0.11

controls wealth effects in labor supply, and At is TFP. We model real GDP growth, infla-

tion, and real marginal cost growth via a GARCH model (see Appendix D.1 for details).

This gives us a quarterly measure of one-step-ahead uncertainty regarding macroeconomic

variables. This corresponds to the uncertainty an economic agent would have about current-

quarter macroeconomic variables if they observed past economic history and interpreted
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it using the statistical model. Our methods are also compatible with other measures of

uncertainty, such as regime-specific covariances from a vector auto-regression (VAR) model.

To map our estimated uncertainties to Equation 37, we take two additional steps. First,

we observe that real marginal cost uncertainty enters firms’ supply-function choice only

via the covariances of real marginal costs with demand and the price level (see Theorem

1). These covariances, in turn, depend only on uncertainty about the aggregate component

of real marginal costs. This allows us to directly apply the GARCH estimates. Second,

we observe that the firm-level demand shock is Ψit = Ytϑit, where ϑit is an idiosyncratic

demand shock. Since we lack direct estimates of firms’ uncertainty about idiosyncratic

demand shocks, we assume that idiosyncratic demand uncertainty is directly proportional

to aggregate TFP uncertainty. We justify this based on the finding of Bloom et al. (2018)

that the time-varying volatility of revenue-based TFP (TFPR) among manufacturing firms

can be accurately modeled as directly proportional to time-varying volatility in aggregate

conditions.13 That is, we set σ̂2
Ψ,t = σ̂2

Y,t +R2σ̂2
M,t, where the σ̂·,t are the estimated GARCH

variances and R = 6.5 from the quantitative estimates of Bloom et al. (2018).14

5.2 The Slope of Aggregate Supply in the US

Our estimates imply that the slope of aggregate supply has varied significantly in the US

since 1960. Panel A of Figure 4 reports an annual time-series of our estimated slope, and

Panel B reports average values over macroeconomic regimes. Aggregate supply significantly

steepens in two episodes: the 1970s, coincident with the Oil Crisis, and the 2020s, coincident

with the post-Covid inflation. Aggregate supply is flatter and roughly constant in the 1960s,

the Great Moderation, the Great Recession, and the recovery from the Great Recession.

Comparison to Empirical Estimates. The slope of aggregate supply ϵSt is defined as

the relative response of the price level and real GDP to a monetary expansion in the same

quarter. In other words, ϵSt measures how inflationary are aggregate demand shocks in the

short-run or the inverse “sacrifice ratio” for monetary policymakers. Therefore, the object of

comparison in the data is the relative elasticity of inflation and real outcomes to an identified

aggregate demand shock or, equivalently, the elasticity of inflation to real outcomes when

the latter is instrumented with an identified aggregate demand shock.

A typical observation in research on US business cycles is that aggregate demand shocks

in the data induce puzzlingly little short-run inflation: that is, in our language, short-run

13Foster et al. (2008) show that cross-firm variation in revenue total factor productivity (TFPR) derives
almost exclusively from demand differences rather than marginal cost differences within specific industries,
justifying our assumption that most “micro volatility” is demand volatility.

14Figure A1 in the Appendix plots each component of estimated uncertainty over time.
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Figure 4: The Slope of Aggregate Supply in the United States Over Time
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Notes: This figure shows the model implied slope of aggregate supply in the United States. The slope ϵSt
is defined by Equation 37. As described in Section 5.1, we set η = 8 and γ = 0.11 based on the literature,
calibrate κM = 0.29 to match an average slope of 0.11 (Hazell et al., 2022), and estimate time-varying
uncertainties from a GARCH model of quarterly-frequency GDP growth, inflation, and real marginal cost
growth. Panel A displays the estimated slope averaged to the annual level. Panel B shows average values
of the estimated slope in different macroeconomic regimes, defined on the horizontal axis and labeled inside
the bars.

aggregate supply is relatively flat. For example, Ramey (2016) summarizes a large literature

documenting relatively small responses of inflation to externally identified monetary policy

shocks and Hazell et al. (2022) use panel data from US states to show that there is limited

pass-through from unemployment to price inflation. Two particularly important observations

in these studies of US economic history are the lack of deflation in response to the crash of

aggregate demand in the Great Recession and the lack of inflation after the large subsequent

monetary expansion (see also Coibion and Gorodnichenko, 2015; Bobeica and Jarociński,

2019). Our calculations are consistent with a low average slope of aggregate supply as well

as a low slope during the Great Recession and recovery.

Nonetheless, studies that have estimated a time-varying slope of aggregate supply in

the United States have found larger values in two periods, the 1970s and 2020s. Our model

generates these dynamics as an endogenous consequence of abrupt changes in the composition

of uncertainty. We make this comparison quantitatively in Table 1, which compares our

predicted dynamics in the slope of aggregate supply to external estimates. The first panel is

based on the study of Ball and Mazumder (2011), who estimate a time-varying relationship

between inflation and the output gap.15 Our model qualitatively matches a steepening of

15These authors construct the output gap using the Congressional Budget Office’s estimate of potential
real GDP. This corresponds to variation in real GDP induced by aggregate demand shocks if aggregate
supply shocks move output together with potential output.

35



Table 1: Comparing the Model’s Prediction to External Estimates

Change in slope of aggregate supply relative to base period, compared to estimates from
A. Ball and Mazumder (2011) B. Hazell et al. (2022) C. Cerrato and Gitti (2022)

1960-1972 1973-1984 1985-2007 1978-1990 1991-2018 1991-2019 2021-2023
Data — +175% -32% — -51% — +145%
Model — +58% -25% — -28% — +112%

Notes: This table compares the model’s estimates for the slope of aggregate supply with external empirical
estimates. The values are percent changes in the slope of aggregate supply, relative to the base period (i.e.,
the first period in each panel). The three panels correspond to comparisons with different studies: in Ball
and Mazumder (2011), Column 4 of Table 3; in Hazell et al. (2022), Panel B, Columns 3 and 4 of Table II;
in Cerrato and Gitti (2022), Column 2 of Table 2.

aggregate supply during the oil crisis and Volcker disinflation (1973-1984), while aggregate

supply is relatively flat before and after. The second panel is based on the estimates of

Hazell et al. (2022) who, as mentioned above, use state-level data in the United States to

isolate demand-driven variation in real conditions. Our model can account for about 1/2 of

the authors’ estimated flattening of the Phillips curve from 1978-1990 to 1991-2018.

The third panel shows the consistency of our results with the behavior of aggregate sup-

ply before and after the Covid crisis based on the estimates of Cerrato and Gitti (2022), who

use data from US metropolitan statistical areas (MSAs) to isolate demand shocks. Quanti-

tatively, our model accounts for about 4/5 of the steepening of aggregate supply between the

pre-Covid and post-Covid periods. Both the model predictions and empirical evidence im-

ply that aggregate demand shocks were relatively inflationary during this period—consistent

with both a large inflationary effect (and small real effect) of fiscal expansion and a large

disinflationary effect (and small real effect) of monetary tightening.

These results suggest that our model’s qualitative predictions for variation in the slope of

aggregate supply are consistent with US empirical evidence. Of course, our baseline model is

lacking several features required to make the model fully consistent with price stickiness at

the microeconomic level and realistically sluggish inflation dynamics at the macroeconomic

level. Theoretically, we have shown that such features can be integrated into the supply-

function approach, while maintaining the essential properties of the latter (Section 2.3).16

We leave a more complete quantitative exploration in a richer model to further research.

16The extension to sticky prices (Appendix B.4) would assist on both fronts. Another possibility, which is
conceptually straightforward to integrate into the model, is to assume that firms do not observe the history
of macroeconomic aggregates and therefore form beliefs using a latent-state (Kalman filtering) model. As
shown by Woodford (2003a) in a model of price-setting, the combination of incomplete information with
strategic interaction can generate realistically slow responses of inflation to shocks.
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Rising Markups and Flattening Supply. While our analysis thus far has focused on

time variation in only uncertainty, in principle time variation in other structural parameters

could affect the slope of aggregate supply in our model. In Appendix D.2, we show that a

version of our quantification that feeds in a secular decline of the elasticity of substitution,

or a secular increase in average markups, predicts an even more pronounced flattening of

the aggregate supply curve over time (Figure A3). We leave a fuller empirical investigation

of the model’s joint predictions for aggregate supply and markups to future work.

5.3 The Slope of Aggregate Supply Around the World

A cursory glance at Figure 4 suggests that aggregate supply is relatively steep in times during

“inflationary crises” in the US and relatively flat otherwise. Our quarterly time-series for

ϵSt has a correlation of 0.93 with one-quarter-ahead uncertainty regarding inflation and a

correlation of 0.62 with the quarterly level of inflation (Figure A2). The deviation between

the level of inflation and inflation uncertainty primarily occurs near “turning points” of the

inflation time series: for example, uncertainty is high despite relatively tame inflation in

2021Q1, on the heels of the Covid lockdown, while uncertainty is only moderate despite very

high inflation in 1981Q2, near the peak of the Volcker tightening cycle. Nonetheless, the

high correlation between these variables presents a challenge for differentiating the qualitative

predictions of our model from alternatives in which price rigidity depends on the baseline

rate of inflation or a one-dimensional summary of inflation volatility (e.g., Ball et al., 1988).

These include models of endogenous price reset probabilities and models of menu costs.

To help distinguish between the roles of the level of inflation and uncertainty about infla-

tion, we conduct a cross-country analysis in the spirit of Lucas (1973) and Ball et al. (1988).

We compile annual data on real GDP growth, GDP deflator inflation, and TFP growth

from 1960-2019 for countries in the OECD.17 In each country, we model these variables as

a one-lag VAR in first differences. Using the same structural parameters and mapping to

the model described above, we construct country-level measures of uncertainty regarding

demand, inflation, and real marginal costs and a model-implied slope of aggregate supply.18

Our first finding is that our cross-country estimates of the slope of aggregate supply

are not positively predicted by average inflation (Panel A of Figure 5). This is in sharp

17We construct TFP as a Solow residual with elasticities 1/3 and 2/3 on the real capital stock and total
labor hours, respectively. We drop three outliers from our calculation, Greece, Iceland, and Sweden, for
which we calculate a slope of aggregate supply and/or inflation-output relationship more than 3 standard
deviations away from the median.

18While our calculation embodies numerous assumptions, we argue that the main ingredients capture
intuitive differences across countries. For example, uncertainty about inflation is the lowest among OECD
countries in the United States, Germany, and Canada, and the highest in Chile, Israel, and Mexico.
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Figure 5: International Evidence on the Slope of Aggregate Supply
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Notes: This figure summarizes our international estimates of the slope of aggregate supply. In each
panel, an observation is an OECD country and the country-level slopes of aggregate supply are cal-
culated using the methods described in Section 5.3. Panel A plots the relationship of the model-
implied slopes versus mean levels of inflation (GDP deflator) from 1960-2019. Panel B plots the re-
lationship between the model-implied slope of aggregate supply and the “reduced form” slope estimate,
β̂S
c = Cov[∆ log Yct,∆ logPct]/Var[∆ log Yct]. Dashed lines are from linear regressions and the labels identify

selected countries by three-letter codes.

contrast to our within-country estimates for the United States. Internationally, the slope

of aggregate supply is predicted to be negative for the countries with the highest rate of

inflation—a consequence of the fact that the same countries have very highly correlated

uncertainty about the price level and real marginal costs.

We next show that our model’s predictions for cross-country relationships between in-

flation and output growth line up with the data. Panel B of Figure 5 shows a positive

relationship between our predicted slope and the year-on-year regression coefficient of infla-

tion on real output growth: for each country c, β̂S
c = Cov[∆ log Yct,∆logPct]

Var[∆ log Yct]
. Thus, in the raw

data, output growth is more inflationary in countries for which we predict a steep slope of

aggregate supply. Of course, the classic conceptual issue with interpreting inflation-output

“correlations” as the slope of aggregate supply is that macroeconomic outcomes are deter-

mined by both demand and supply shocks. In Appendix D.3, we construct a model-derived

instrument which isolates exogenous variation in the money supply. Our IV estimate of the

slope of aggregate supply is also positively correlated with our predicted slope.

While these findings on a small set of countries are merely suggestive, they imply that

our model and its emphasis on relative uncertainties might help account for the enormous

heterogeneity in inflation-output dynamics across countries. Moreover, the model has predic-

tive power over and above models in which the slope of aggregate supply depends positively

on only the mean or volatility of inflation (e.g., Ball et al., 1988).19

19In Table A2, we more formally demonstrate this in a cross-country regression analysis.
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6 Conclusion

In this paper, we enrich firms’ supply decisions by allowing them to choose supply functions

that describe the price charged at each quantity of production. We show how to model sup-

ply functions in a macroeconomic setting and characterize how the optimal supply function

depends on the elasticity of demand and the nature of uncertainty that firms face. Our

framework yields rich implications when embedded in an otherwise standard monetary busi-

ness cycle model. We find that a higher elasticity of demand and increased uncertainty about

the price level relative to demand endogenously steepen aggregate supply. When mapped to

the data, our model generates variation in the slope of aggregate supply that is consistent

with empirical evidence within the US and across countries.

On the basis of our analysis, we argue that supply schedules warrant serious consideration

as an alternative model of firm conduct in macroeconomics for three core reasons. First,

most existing work assumes that firms set a price in advance and commit to supply at

the market-clearing quantity. Our results emphasize that this is not generally an optimal

way for a firm to behave and that the macroeconomic conclusions that one draws about

the effects of uncertainty, the propagation of monetary and productivity shocks, and the

role of market power are highly sensitive to this choice. For example, the price-setting

assumption maximizes the degree of monetary non-neutrality and leaves no role for market

power. Second, we have shown that working with supply schedules is analytically tractable

under the standard assumptions in the literature and can be done in a large class of linearized

macroeconomic models of the kind studied by, for example, McKay and Wolf (2023). Finally,

taking the supply-schedule perspective yields economic predictions that are consistent with

broad trends in US aggregate supply over the last 60 years and cross-sectional patterns in

aggregate supply around the world.

Within the context of supply schedules and the macroeconomy, our study is only a first

exploration; there remains much to examine. Recent work has expanded upon our analysis

of the macroeconomic implications of supply function equilibrium to consider learning from

input markets. Of particular note, Hellwig and Venkateswaran (2024) study a dispersed

information model in which firms nonetheless have enough information to implement their

full-information pricing policy. Their analysis also shows how our model of supply function

competition in general equilibrium can be fruitfully integrated into other dynamic macroe-

conomic models. Moreover, Nikolakoudis (2024) considers a framework in which firms learn

from input prices in a production network. Further exploration of how different market

structures affect firms’ supply decisions appears a promising avenue for future research.
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Appendices

A Omitted Proofs

A.1 Proof of Theorem 1

Proof. Fix a supply function f . The realized price of the firm in state z solves f(p̂(z), zp̂(z)−η) =

0. As we placed no restrictions on f , it is equivalent to think of the firm as choosing p̂ directly.

For a given choice of p̂, the firm’s payoff is given by:

J(p̂) =

∫
R4
++

Λ

(
p̂(z)

P
−M

)
zp̂(z)−η dG (Λ, P,M, z) (38)

where G is the cumulative distribution function representing the firm’s beliefs. We therefore

study the problem:

sup
p̂:R+→R++

J(p̂) (39)

Given a solution p̂ for how firms optimally adapt their prices to demand, we will recover the

optimal plan f for how firms optimally set a supply function.

We first derive Equation 8 using variational methods. Consider a variation p̃(z) = p(z)+

εh(z). The expected payoff under this variation is:

J(ε;h) =

∫
R4
++

Λ

(
p(z) + εh(z)

P
−M

)
z (p(z) + εh(z))−η dG (Λ, P,M, z) (40)

A necessary condition for the optimality of a function p is that Jε(0;h) = 0 for all F−measurable

h. Taking this derivative and setting ε = 0, we obtain:

0 =

∫
R4
++

[
Λ
h(z)

P
zp(z)−η − ηΛh(z)

(
p(z)

P
−M

)
zp(z)−η−1

]
dG (Λ, P,M, z) (41)

Consider h functions given by the Dirac delta functions on each z, h(z) = δz. This condition

becomes:

0 =

∫
R3
++

[
Λ
1

P
tp(t)−η − ηΛ

(
p(t)

P
−M

)
tp(t)−η−1

]
g(Λ, P,M, t) dΛdP dM (42)
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for all t ∈ R++. This is equivalent to:

0 =

∫
R3
++

[
Λ
1

P
tp(t)−η − ηΛ

(
p(t)

P
−M

)
tp(t)−η−1

]
g(Λ, P,M|t) dΛdP dM

= (1− η)E
[
Λ
1

P
|z = t

]
tp(t)−η + ηE [ΛM|z = t] tp(t)−η−1

(43)

Thus, we have that an optimal solution necessarily follows:

p(t) =
η

η − 1

E[ΛM|z = t]

E[ΛP−1|z = t]
(44)

as claimed in Equation 8.

We now evaluate the expectations. Using log-normality,

E[ΛM|z = t] = exp

{
µΛ|z(t) + µM|z(t) +

1

2
σ2
Λ|z +

1

2
σ2
M|z + σΛ,M|z

}
E[ΛP−1|z = t] = exp

{
µΛ|z(t)− µP |z(t) +

1

2
σ2
Λ|z +

1

2
σ2
P |z − σΛ,P |z

} (45)

where µX|z = E[logX| log z] and σX,Y |z = Cov[logX, log Y | log z]. Thus,

E[ΛM|z = t]

E[ΛP−1|z = t]
= exp

{
µM|z(t) + µP |z(t) +

1

2
σ2
M|z −

1

2
σ2
P |z + σΛ,M|z + σΛ,P |z

}
(46)

Using standard formulas for Gaussian conditional expectations,

µM|z(t) = µM +
σM,z

σ2
z

(log t− µz)

σ2
M|z = σ2

M −
σ2
M,z

σ2
z

σΛ,M|z = σΛ,M − σΛ,zσM,z

σ2
z

µP |z(t) = µP +
σP,z

σ2
z

(log t− µz)

σ2
P |z = σ2

P −
σ2
P,z

σ2
z

σΛ,P |z = σΛ,P − σΛ,zσP,z

σ2
z

(47)

where:
σ2
z = σ2

Ψ + η2σ2
P + 2ησΨ,P

σM,z = σM,Ψ + ησM,P

σP,z = σP,Ψ + ησ2
P

σΛ,z = σΛ,Ψ + ησΛ,P

(48)

We now combine these expressions with Equation 44 to derive the optimal supply func-

tion. We first observe that

log p = ω0 + ω1 log t (49)
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where:

ω0 = log
η

η − 1
+ µM + µP − ω1µz +

1

2
σ2
M|z −

1

2
σ2
P |z + σΛ,M|z + σΛ,P |z (50)

ω1 =
σM,z + σP,z

σ2
z

=
σM,Ψ + ησM,P + σP,Ψ + ησ2

P

σ2
Ψ + η2σ2

P + 2ησΨ,P

(51)

Next, using the demand curve, we observe that z = qpη. Therefore, log t = log q − η log p.

Substituting this into Equation 49, and re-arranging, we obtain

log p = α0 + α1 log q (52)

where:

α0 =
ω0

1− ηω1

, α1 =
ω1

1− ηω1

(53)

We finally derive the claimed expression for α1,

α1 =

σM,Ψ+ησM,P+σP,Ψ+ησ2
P

σ2
Ψ+η2σ2

P+2ησΨ,P

1− η
σM,Ψ+ησM,P+σP,Ψ+ησ2

P

σ2
Ψ+η2σ2

P+2ησΨ,P

=
σM,Ψ + ησM,P + σP,Ψ + ησ2

P

σ2
Ψ + ησΨ,P − ησM,Ψ − η2σM,P

(54)

Completing the proof.

A.2 Proof of Corollary 1

Proof. If 2ησM,P + σM,Ψ ≥ σP,Ψ, then the denominator of Equation 6 is decreasing in η.

Moreover, if σM,P ≥ 0, the numerator is increasing in η. Hence, α1 is increasing in η

whenever α1 > 0.

A.3 Proof of Proposition 1

Proof. From the household’s choice among varieties, the demand curve for each variety i is

pit
Pt

=

(
cit

ϑitCt

)− 1
η

(55)

From the intratemporal Euler equation for consumption demand vs. labor supply, the house-

hold equates the marginal benefit of supplying additional labor witC
−γ
t P−1

t with its marginal
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cost ϕit. Thus, variety-specific wages are given by

wit = ϕitPtC
γ
t (56)

From the intertemporal Euler equation between consumption and money today, the cost of

holding an additional dollar today equals the benefit of holding an additional dollar today

plus the value of an additional dollar tomorrow:

C−γ
t

1

Pt

=
1

Mt

+ βEt

[
C−γ

t+1

1

Pt+1

]
(57)

Further, from the intertemporal choice between bonds, the cost of saving an additional dollar

today equals the nominal interest rate 1+it times the value of an additional dollar tomorrow:

C−γ
t

1

Pt

= β(1 + it)Et

[
C−γ

t+1

1

Pt+1

]
(58)

From Equations 57 and 58, we obtain:

1

Mt

+ βEt

[
C−γ

t+1

1

Pt+1

]
= β(1 + it)Et

[
C−γ

t+1

1

Pt+1

]
(59)

It follows that:
1

Mt

= βitEt

[
C−γ

t+1

1

Pt+1

]
=

it
1 + it

C−γ
t

1

Pt

(60)

where the second equality uses Equation 58 once again. This rearranges to:

Ct =

(
it

1 + it

) 1
γ
(
Mt

Pt

) 1
γ

(61)

We next derive the interest rate. Substituting equation 61 into Equation 58, we obtain:

1 + it
it

1

Mt

= β(1 + it)Et

[
1 + it+1

it+1

1

Mt+1

]
(62)

Dividing both sides by (1 + it), multiplying by Mt, and then adding one, we obtain:

1 + it
it

= 1 + βEt

[
1 + it+1

it+1

Mt

Mt+1

]
= 1 + βEt

[
exp{−µM − σM

t+1ε
M
t+1}

1 + it+1

it+1

]
(63)

where the second equality exploits the fact that Mt follows a random walk with drift. If we
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guess that it is deterministic and define xt =
1+it
it

, then we obtain that:

xt = 1 + δtxt+1 (64)

where:

δt = β exp

{
−µM +

1

2
(σM

t+1)
2

}
(65)

We observe that δt ∈ [0, β] for all t due to the assumption that 1
2
(σM

t )2 ≤ µM . Solving this

equation forward, we obtain that for T ≥ 2:

xt = 1 + δt

(
1 +

T−1∑
i=1

i∏
j=1

δt+j

)
+ δt

(
T∏

j=1

δt+j

)
xt+T+1 (66)

Taking the limit T → ∞, this becomes:

xt = 1 + δt

(
1 +

∞∑
i=1

i∏
j=1

δt+j

)
+ δt lim

T→∞

(
T∏

j=1

δt+j

)
xt+T+1 (67)

where the final term can be bounded using the fact that δt ∈ [0, β]:

0 ≤ δt lim
T→∞

(
T∏

j=1

δt+j

)
xt+T+1 ≤ lim

T→∞
βT+1xt+T+1 (68)

The household’s transversality condition ensures that this upper bound is zero. Formally,

the transversality condition (necessary for the optimality of the household’s choices) is that:

lim
T→∞

βT C
−γ
T

PT

(MT + (1 + iT )BT ) = 0 (69)

Moreover, as Bt = 0 for all t ∈ N, this reduces to limT→∞ βT C−γ
T

PT
MT = 0. By Equation 60,

we have that xt

Mt
=

C−γ
t

Pt
. Thus, the transversality condition reduces to limT→∞ βTxT = 0.

Combining this with Equation 68, we have that limT→∞
(∏T

j=1 δt+j

)
xt+T+1 = 0. An explicit

formula for the interest rate follows:

1 + it
it

= 1 + β exp

{
−µM +

1

2
(σM

t+1)
2

}(
1 +

∞∑
i=1

i∏
j=1

β exp

{
−µM +

1

2
(σM

t+j+1)
2

})
(70)

The formulae in Equation 20 then follow. In particular, Ψit = ϑitCt follows from comparing

Equations 2 and 55. Pt =
it

1+it
C−γ

t Mt follows from Equation 61. Λt = C−γ
t is the households
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marginal utility from consumption. Finally, Mit =
1

zitAt

wit

Pt
=

ϕitC
γ
t

zitAt
follows from Equation

56.

A.4 Proof of Theorem 2

Proof. We begin by characterizing log-linear equilibria, which is achieved by the following

Lemma:

Lemma 1 (Macroeconomic Dynamics with Supply Functions). If all firms use log-linear

supply functions of the form in Equation 21, output in the unique log-linear temporary equi-

librium follows:

logCt = χ̃0,t +
1

γ

κA
t

1− ω1,t

(
η − 1

γ

)
(1− κA

t )
logAt +

1

γ

(1− κM
t )(1− ηω1,t)

1− ω1,t

(
η − 1

γ

)
(1− κM

t )
logMt (71)

and the aggregate price in the unique log-linear temporary equilibrium is given by:

logPt = χ0,t −
κA
t

1− ω1,t

(
η − 1

γ

)
(1− κA

t )
logAt +

κM
t + ω1,t

γ
(1− κM

t )

1− ω1,t

(
η − 1

γ

)
(1− κM

t )
logMt (72)

where χ0,t and χ̃0,t are constants that depend only on parameters (including α1,t) and past

shocks to the economy.

Proof. We suppress dependence on t for ease of notation. Consider a plan:

log pi = log α̃0,i + α1 log qi (73)

where α̃0,i = eα0,i . The demand-supply relationship that the firm faces is:

log pi = −1

η
(log qi − log Ψ) + logP (74)

The realized quantity therefore is:

log qi =
−η

1 + ηα1

log α̃0,i +
1

1 + ηα1

log ΨiP
η (75)

and the realized price is:

log pi =
1

1 + ηα1

log α̃0,i +
α1

1 + ηα1

log ΨiP
η (76)
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It is useful to make the change of variables ω1 =
α1

1+ηα1
, which implies that we may write

log pi = (1− ηω1) log α̃0,i + ω1 log ΨiP
η (77)

Our goal is to express dynamics only as a function of ω1. We first find the optimal α0,i in

terms of ω1. The firm therefore solves:

max
α̃0,i

Ei

[
Λ
(pi
P

−Mi

)(pi
P

)−η

Ψi

]
(78)

Substituting for the realized price using the demand-supply relationship yields:

max
α̃0,i

E

[
Λ

(
α̃1−ηω1

0,i

P
(ΨiP

η)ω1 −Mi

)
α̃η2ω1−η
0,i (ΨiP

η)1−ηω1

]
(79)

The optimal α̃0,i is:

α̃1−ηω1

0,i =
η

η − 1

Ei[ΛMi (ΨiP
η)1−ηω1 ]

Ei[
Λ
P
(ΨiP η)1−ηω1+ω1 ]

(80)

Substituting back into the realized price yields:

pi =
η

η − 1

Ei[ΛMi (ΨiP
η)1−ηω1 ]

Ei[
Λ
P
(ΨiP η)1−ηω1+ω1 ]

(ΨiP
η)ω1 (81)

We may express this only in terms of P by using Proposition 1, where we let I = 1+i
i

for

ease of notation:

pi =
η

η − 1

Ei

[
ϕ(ziA)

−1
(
ϑiI

− 1
γP− 1

γM
1
γP η

)1−ηω1
]

Ei

[
I1−

1
γ
(1+ω1−ηω1)M

1
γ
(1+ω1−ηω1)−1ϑ1+ω1−ηω1P (η− 1

γ )(1+ω1−ηω1)
]

×
(
ϑiI

− 1
γM

1
γP η− 1

γ

)ω1

(82)

Given the ideal price index formula (Equation 14), P must satisfy the aggregation:

P 1−η = E
[
ϑip

1−η
i

]
(83)

where the expectation is over the cross-section of firms. We guess and verify that the

aggregate price is log-linear in aggregates

logP = χ0 + χA logA+ χM logM (84)
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Moreover, if the pi are log-normally distributed (we will verify this below), then:

logP = E[log pi] +
1

2(1− η)
Var((1− η) log pi) + const (85)

We first simplify the numerator of the first term by collecting all the terms involving sAi

and sMi :

logEi

[
ϕi(ziA)

−1
(
ϑI−

1
γP− 1

γM
1
γP η

)1−ηω1
]
=

[
−κA + κA

(
η − 1

γ

)
χA(1− ηω1)

]
sAi

+

[
χM

(
η − 1

γ

)
(1− ηω1)κ

M +
1

γ
(1− ηω1)κ

M

]
sMi + const

(86)

where the constants are independent of signals. We similarly simplify the denominator of

the second term:

logEi

[
I1−

1
γ
(1+ω1−ηω1)M

1
γ
(1+ω1−ηω1)−1ϑ1+ω1−ηω1P (η− 1

γ )(1+ω1−ηω1)
]
=[

χA

(
η − 1

γ

)
(1 + ω1 − ηω1)κ

A

]
sAi

+

[[
1

γ
(1 + ω1 − ηω1)− 1

] (
κM
)
+ χM

(
η − 1

γ

)
(1 + ω1 − ηω1)

(
κM
)]

sMi

+ const

(87)

where the constants are again independent of signals. Finally, we can simplify the last term:

log
(
ϑiI

− 1
γM

1
γP η− 1

γ

)ω1

= ω1χA

(
η − 1

γ

)
logA+ω1

[
χM

(
η − 1

γ

)
+

1

γ

]
logM+const (88)

where the constants are independent of the aggregate shocks. Hence, log pi is indeed normally

distributed and its variance is independent of the realization of aggregate shocks. We can

now collect terms to verify our log-linear guess. Substituting the resulting expression for

log pi and our guess for logP from Equation 84 into Equation 85, and solving for χA by

collecting coefficients on logA yields:

χA = − κA

1− ω1

(
η − 1

γ

)
(1− κA)

(89)

We may similarly solve for χM :

χM =
κM + ω1

γ
(1− κM)

1− ω1

(
η − 1

γ

)
(1− κM)

(90)
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This proves the dynamics for the price level. The dynamics for consumption then follow

from Proposition 1.

With this characterization in hand, by Equation 71 and market clearing Ct = Yt, we

have:

logMt =
1

χ̃M,t

(log Yt − χ̃A,t logAt − χ̃0,t) (91)

Substituting for logMt in Equation 72 and defining log P̄t = χ0,t−ϵSt χ̃0,t and δt = χA,t−ϵSt χ̃A,t

then yields Equation AS:

logPt = log P̄t + ϵSt log Yt + δt logAt (92)

Doing a similar substitution for logAt in Equation 71 then yields Equation AD:

logPt = log

(
it

1 + it

)
− ϵDt log Yt + logMt (93)

Completing the proof.

A.5 Proof of Theorem 3

Proof. We suppress dependence on t for ease of notation. We have χM and χA as a function

of ω1 from Lemma 1. We also know that:

ω1 =
σMi,z + σP,z

σ2
z

(94)

from Equation 51. As zi = ϑi

(
i

1+i

) 1
γ M

1
γP η− 1

γ and Mi = ϕi(ziA)
−1 i

1+i
M
P
, we have that:

σMi,z = Cov

(
−(1 + χA) logA+ (1− χM) logM,

(
η − 1

γ

)
χA logA+

(
1

γ
+

(
η − 1

γ

)
χM

)
logM

)
= −

(
η − 1

γ

)
χA(1 + χA)σ

2
A + (1− χM)

(
1

γ
+

(
η − 1

γ

)
χM

)
σ2
M

σP,z = Cov

(
χA logA+ χM logM,

(
η − 1

γ

)
χA logA+

(
1

γ
+

(
η − 1

γ

)
χM

)
logM

)
=

(
η − 1

γ

)
χ2
Aσ

2
A + χM

(
1

γ
+

(
η − 1

γ

)
χM

)
σ2
M

σ2
z = σ2

ϑ +

(
η − 1

γ

)2

χ2
Aσ

2
A +

(
1

γ
+

(
η − 1

γ

)
χM

)2

σ2
M

(95)
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Thus:

ω1 =
−(η − 1

γ
)χAσ

2
A + ( 1

γ
+ (η − 1

γ
)χM)σ2

M

σ2
ϑ + (η − 1

γ
)2χ2

Aσ
2
A + ( 1

γ
+ (η − 1

γ
)χM)2σ2

M

(96)

Note that the optimal ω1 is common across all firms i. We may express this in fully reduced

form as:

ω1 = T (ω1) =
(η − 1

γ
) κA

1−ω1(η− 1
γ )(1−κA)

σ2
A + ( 1

γ
+ (η − 1

γ
)

κM+
ω1
γ
(1−κM )

1−ω1(η− 1
γ )(1−κM )

)σ2
M

σ2
ϑ + (η − 1

γ
)2
(

κA

1−ω1(η− 1
γ )(1−κA)

)2

σ2
A + ( 1

γ
+ (η − 1

γ
)

κM+
ω1
γ
(1−κM )

1−ω1(η− 1
γ )(1−κM )

)2σ2
M

(97)

or

ω1 = T (ω1) =

(η− 1
γ )κA

1−ω1(η− 1
γ )(1−κA)

σ2
A +

1
γ
+(η− 1

γ )κM

1−ω1(η− 1
γ )(1−κM )

σ2
M

σ2
ϑ +

(
(η− 1

γ )κA

1−ω1(η− 1
γ )(1−κA)

)2

σ2
A +

(
1
γ
+(η− 1

γ )κM

1−ω1(η− 1
γ )(1−κM )

)2

σ2
M

(98)

A.6 Proof of Proposition 2

Proof. We first establish equilibrium existence. First, we observe that Tt is a continuous func-

tion. The only possible points of discontinuity are: ωM
1,t =

1
(η− 1

γ
)(1−κM

t )
and ωA

1,t =
1

(η− 1
γ
)(1−κA

t )
.

However, at these points limω1,t→ωM
1,t
Tt(ω1,t) = limω1,t→ωA

1,t
Tt(ω1,t) = Tt(ω

M
1,t) = Tt(ω

A
1,t) = 0.

Second, we observe that limω1,t→−∞ Tt(ω1,t) = limω1,t→∞ Tt(ω1,t) = 0. Consider now the func-

tion Wt(ω1,t) = ω1,t − Tt(ω1,t). This is a continuous function, limω1,t→−∞ Wt(ω1,t) = −∞,

and limω1,t→∞Wt(ω1,t) = ∞. Thus, by the intermediate value theorem, there exists an ω∗
1,t

such that Wt(ω
∗
1,t) = 0. By Theorem 3, ω∗

1,t defines a log-linear equilibrium.

We now show that there are at most five log-linear equilibria. For ω1,t ̸= ωA
1,t, ω

M
1,t (neither
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of which can be a fixed point), we can rewrite Equation 29 as:

ω1,t

[
σ2
ϑ,t

(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)2(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)2

+
(
σA
t|s
)2(

η − 1

γ

)
κA
t

(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)2

+
(
σM
t|s
)2(1

γ
+

(
η − 1

γ

)
κM
t

)(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)2
]

=
(
σA
t|s
)2(

η − 1

γ

)
κA
t

(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)2(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)
+
(
σM
t|s
)2(1

γ
+

(
η − 1

γ

)
κM
t

)(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)2(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)
(99)

This is a quintic polynomial in ω1,t, which has at most five real roots. Thus, by Theorem 3,

there are at most five log-linear equilibria.

A.7 Proof of Corollary 5

Proof. We drop time subscripts for ease of notation. Substituting η = 1
γ
in Equation 29

yields:

ω1 =

1
γ

ρ2 +
(

1
γ

)2 (100)

Substituting this into Equation 24 yields:

ϵSt = γ
κM
t

(1− κM
t )

+
1

γρ2(1− κM
t )

(101)
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A.8 Proof of Corollary 6

We drop time subscripts for ease of notation. The first statement follows directly from

Equation 29. Furthermore, using Equation 29, as σM
t|s → ∞, ω1 must solve:

ω1 =
1− ω1

(
η − 1

γ

) (
1− κM

)
1
γ
+
(
η − 1

γ

)
κM

=
γ

1 + (ηγ − 1)κM
+

(
1− ηγ

1 + (ηγ − 1)κM

)
ω1

=
1

η

(102)

This proves the second statement. As σA
t|s → ∞ and ηγ ̸= 1, ω1 must solve:

ω1 =
1− ω1

(
η − 1

γ

) (
1− κA

)(
η − 1

γ

)
κA

=
γ

(ηγ − 1)κA
+

(
1− 1

κA

)
ω1

=
1

η − 1
γ

(103)

This proves the third statement.

A.9 Proof of Proposition 3

Proof. By Theorem 3, The map describing equilibrium ω1,t is invariant to λ for λ > 0.

Thus, ES
t (λ) is constant for λ > 0. If λ = 0, there are potentially many equilibria in supply

functions. Nevertheless, from the proof of Theorem 1, we have that firms set pit/Pt =
η

η−1
Mit =

η
η−1

Cγ
t /At under any optimal supply function. This implies that η

η−1
Cγ

t /At = 1,

and so money has no real effects, which implies that ϵSt = ∞.
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B Supply Functions in Richer Economic Settings

In this appendix, we generalize the firm’s partial-equilibrium supply schedule problem in

four ways. First, we enrich both the firm’s technology and input space by allowing for many

inputs, decreasing returns to scale, and monopsony power. Second, we enrich the demand the

firm faces by decoupling the own-price elasticity and the cross-price elasticity and allowing

for non-isoelastic demand curves that feature endogenous markups (allowing for Marshall’s

Second and Third laws of demand). Third, we enrich the firm’s decisionmaking by allowing

the firm to choose additional non-price and non-quantity variables at a cost. This allows,

for example, the firm to invest in improving the quality of its product. Finally, we enrich

the firm’s problem by introducing Calvo price stickiness. In all four cases, we characterize

firms’ optimal supply functions, show that our core insights generalize, and highlight the

new economic features that each of these extensions introduces. In the interest of brevity,

we leave embedding these generalizations in general equilibrium to future research, though

it is clear to see how one could do this by embedding these characterizations in our general

equilibrium model and leveraging the techniques from our main analysis.20

B.1 Multiple Inputs, Decreasing Returns, and Monopsony

In this section, we generalize our baseline model of supply function choice to allow for

multiple inputs, decreasing returns, and monopsony. We find that: (i) supply functions

remain endogenously log-linear and (ii) decreasing returns and monopsony flatten the optimal

supply schedule.

Primitives. Consider the baseline model from Section 2 with two modifications. First, the

production function uses multiple inputs with different input shares and possibly features

decreasing returns-to-scale:

q = Θ
I∏

i=1

xai
i (104)

where xi ∈ R+, ai ≥ 0, and
∑I

i=1 ai ≤ 1. Moreover, suppose that the producer potentially

has monopsony power and faces an upward-sloping factor price curve such that the price of

acquiring any input i when the firm demands xi units is given by p̃i(xi) = pxix
bi−1
i , where

pxi ∈ R++ and bi ≥ 1. The case of no monopsony, or price-taking in the input market, occurs

20The only complication with endogenous markups would be the endogenous non-log-linearity of the
optimal supply curve. This would have to be dealt with via either approximation arguments similar to those
we adopt in our extension to allow for price stickiness or numerical methods, or both.
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when bi = 1. Thus, the cost of acquiring each type of input is given by:

ci(xi) = pxix
bi
i (105)

The firm believes that (Ψ, P,Λ,Θ, px) is jointly log-normal.

The Firm’s Problem. We begin by solving the firm’s cost minimization problem:

K(q; Θ, px) = min
x

I∑
i=1

pxi
xbi
i s.t. q = Θ

I∏
i=1

xai
i (106)

This has first-order condition given by:

λ =
bipxi
ai

xbi
i q

−1 (107)

Which implies that:

K(q; Θ, px) = λq
I∑

i=1

ai
bi

(108)

Moreover, fixing i, the FOC implies that we may write for all j ̸= i:

xj =

 bipxi
ai

bjpxj
αj

 1
bj

x
bi
bj

i (109)

By substituting this into the production function we have that:

q = Θx
ai+bi

∑
j ̸=i

aj
bj

i

∏
j ̸=i

 bipxi
ai

bjpxj
αj


αj
bj

(110)

which implies that:

xi =


q

Θ
∏

j ̸=i

(
bipxi
ai

bjpxj
αj

)αj
bj



1

ai+bi
∑

j ̸=i
aj
bj

(111)
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Returning to the FOC, we have that the Lagrange multiplier is given by:

λ = q
−1+ 1∑I

i=1
ai
bi
bipxi
ai

Θ
∏
j ̸=i

 bipxi
ai

bjpxj
αj


αj
bj


−1∑I

i=1

aj
bj

(112)

Which then yields the cost function:

K(q; Θ, px) = MPq
1
δ (113)

where:

δ =
I∑

i=1

ai
bi

and M = P−1

(
Θ

I∏
i=1

(
bipxi

αi

)αj
bj

) 1∑I
i=1

ai
bi

I∑
i=1

ai
bi

(114)

and we observe that M is log-normal given the joint log-normality of (Θ, px).

Turning to the firm’s payoff function, we therefore have:

E
[
Λ
( p

P
q −Mq

1
δ

)]
(115)

Thus, the problem with multiple inputs, monopsony, and decreasing returns modifies the

firms’ original payoff by only introducing the parameter δ. Helpfully, observe that δ = 1

when: (i) there are constant returns to scale
∑I

i=1 ai = 1 and (ii) there is no monopsony

bi = 1 for all i.

Given this, we can write the firm’s objective as:

J(p̂) =

∫
R4
++

Λ

(
p̂(z)1−η

P
z −Mz

1
δ p̂(z)−

η
δ

)
dG (Λ, P,M, z) (116)

And, as before, we study the problem:

sup
p̂:R+→R++

J(p̂) (117)

By doing this, we obtain a modified formula for the optimal supply function:

Proposition 4 (Optimal Supply Schedule With Multiple Inputs, Decreasing Returns, and

Monopsony). Any optimal supply schedule is almost everywhere given by:

f(p, q) = log p− ω0 − log δ

1− ηω1

−
ω1 +

1−δ
δ

1− ηω1

log q (118)

where ω0 and ω1 are the same as those derived in Theorem 1. Thus, the optimal inverse
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supply elasticity is given by:

α̂1 =
ησ2

P + σM,Ψ + σP,Ψ + ησM,P

σ2
Ψ − ησM,Ψ + ησP,Ψ − η2σM,P

(
1 +

1− δ

δ

σ2
Ψ + η2σ2

P + 2ησΨ,P

σM,Ψ + ησM,P + σP,Ψ + ησ2
P

)
(119)

Proof. Applying the same variational arguments as in the Proof of Theorem 1, we obtain

that p̂(t) must solve:

(η − 1)E[ΛP−1|z = t]tp̂(t)−η =
η

δ
E[ΛM|z = t]t

1
δ p̂(z)−

η
δ
−1 (120)

Which yields:

p̂(t) =

(
δ−1 η

η − 1

E[ΛM|z = t]

E[ΛP−1|z = t]

) 1

1+η( 1−δ
δ )

t

1−δ
δ

1+η( 1−δ
δ ) (121)

Thus, we have that:

log p =
1

1 + η
(
1−δ
δ

) (ω0 − log δ) +
1

1 + η
(
1−δ
δ

) (ω1 +
1− δ

δ

)
log z (122)

where ω0 and ω1 are as in Theorem 1. Rewriting as a supply schedule, we obtain:

log p =

1

1+η( 1−δ
δ )

(ω0 − log δ)

1− η

1+η( 1−δ
δ )

(
ω1 +

1−δ
δ

) + 1

1+η( 1−δ
δ )

(
ω1 +

1−δ
δ

)
1− η

1+η( 1−δ
δ )

(
ω1 +

1−δ
δ

) log q (123)

Which reduces to the claimed formula.

Thus, when the supply curve is initially upward-sloping (ω1 ∈ [0, η−1]), the introduction

of decreasing returns and/or monopsony unambiguously increases the supply elasticity and

makes firms closer to quantity-setting.

B.2 Beyond Isoelastic Demand

Isoelastic demand imposes both that the firm’s own price elasticity of demand and its cross-

price elasticity of demand are constant. In this appendix, we show how to derive optimal

supply functions in closed form when the firm’s own price elasticity of demand varies. This

allows the demand curve to satisfy Marshall’s second law of demand that the price elasticity

of demand is increasing in the price as well as Marshall’s third law of demand that the rate

of increase of the price elasticity goes down with the price. We show that uncertainty about

demand, prices, and marginal costs continue to operate in a very similar fashion. However,

due to endogeneity of the optimal markup, the optimal supply schedule now ceases to be
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log-linear.

To capture these features, suppose that demand is multiplicatively separable: d(p,Ψ, P ) =

z(Ψ, P )ϕ(p) for some function ϕ such that pϕ′′(p)/ϕ′(p) < −2. This latter condition is

satisfied by isoelastic demand exactly under the familiar condition that η > 1 and ensures

the existence of a unique optimal price. We further assume that z(Ψ, P ) = ν0Ψ
ν1P ν2 for

ν0, ν1, ν2 ∈ R \ {0}. This makes firms’ uncertainty about the location of their demand curve

log-normal. This assumption does rule out non-separable demand, such as the demand

system proposed by Kimball (1995). However, it is important to note that this demand

system is motivated by evidence on the firm’s own price elasticity, which is governed by

ϕ, and not the cross-price elasticity, which is governed by ν2. Thus, our proposed demand

system is equally able to capture facts about the firms’ own price elasticity as the one

proposed in Kimball (1995), or the richer structures proposed by Fujiwara and Matsuyama

(2022) and Wang and Werning (2022).

Under this demand system, we can derive a modified formula for the optimal supply

curve which is now no longer log-linear, but continues to be governed by similar forces:

Proposition 5. If demand is multiplicatively separable, then any optimal supply function is

almost everywhere given by:

f(p, q) = log q + α̂0 − log

(
ϕ(p)

{
p

[
1 +

ϕ(p)

pϕ′(p)

]} 1
ω̂1

)
(124)

where:

ω̂1 =
ν1(σM,Ψ + σP,Ψ) + ν2(σ

2
P + σM,P )

ν2
1σ

2
Ψ + ν2

2σ
2
P + 2ν1ν2σΨ,P

(125)

Proof. Applying the same variational arguments as in Theorem 1, we obtain that:

p̂(z) +
ϕ(p̂(z))

ϕ′(p̂(z))
=

E[ΛM|z]
E[ΛP−1|z]

(126)

where the condition pϕ′′(p)/ϕ′(p) < −2 yields strict concavity of the objective and makes

p̂(z) the unique maximizer. Taking logarithms of both sides and evaluating the conditional

expectations as per Theorem 1, we obtain that:

log

(
p̂(z)

[
1 +

ϕ(p̂(z))

p̂(z)ϕ′(p̂(z))

])
= ω̂0 + ω̂1 log z (127)

where ω̂1 =
σM,z+σP,z

σ2
z

, which yields Equation 125. Using log z = log q − log ϕ(p) and rear-

ranging yields Equation 124.
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Demand uncertainty and price uncertainty enter the same way as before, via ω̂1, and

the intuition is the same. However, there are now two distinct notions of market power

and they therefore operate in a more subtle way. First, consider the role of the cross-price

elasticity of demand ν2. When ν2 is higher, the firm’s price is ex post more responsive to

changes in others’ prices. Second, consider the role of the own-price elasticity of demand(
pϕ′(p)
ϕ(p)

)−1

. This induces non-linearity of the optimal supply schedule to the extent that it

is not constant. This is because the firm’s optimal markup changes as it moves along its

demand curve.

B.3 Additional Choice Variables

Our approach of studying firms’ supply functions has thus far focused on firms that choose

prices and quantities. However, it is natural to imagine that firms can make richer choices,

such as deciding what quality or type of product they will sell. In this appendix, we gener-

alize our characterization of firms’ optimal supply functions to incorporate additional choice

margins. We find that supply functions remain log-linear conditional on these other choices.

We also show how to characterize the optimal values of these other choices given this fact.

To model additional choice margins, suppose that the firm, in addition to its price and

quantity decisions, chooses a vector of non-quantity decisions x ∈ X ⊆ Rn. These decisions

are made at the beginning of the period and potentially affect the joint distribution of

(Λ, P,M,Ψ) via the map G : X → ∆(R4
+). We suppose that choices of x ∈ X lead

to a dollar cost to the firm of C(x). To see how this framework accommodates quantity

investments, suppose that X ⊆ R and x ∈ X represents the quality of the good. Investing in

different qualities comes at a cost. Moreover, higher quality might increase both the mean

of firms’ demand Ψ and the mean of firms’ marginal costs M.

We now characterize firms’ optimal supply function decisions in this framework. We

let H(f, x) denote the joint distribution over (Λ, P,M,Ψ, p, q) induced by a supply function

f : R2
++ → R and other decisions x. With this, the firm’s problem of optimal supply function

and other decisions is given by:

sup
x∈X,f :R2

++→R
EH(f,x)

[
Λ
( p

P
−M

)
q
]
− EH(f,x)[Λ]C(x) (128)

This can be split into two optimization problems. First, for every choice of x ∈ X, we solve

for the optimal supply function fx:

V (x) = sup
f :R2

++→R
EH(f,x)

[
Λ
( p

P
−M

)
q
]

(129)
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Second, we can compute the optimal choice of x ∈ X by solving:

sup
x∈X

V (x)− EH(f,x)[Λ]C(x) (130)

By identical arguments to those of Theorem 1 (simply index G by x up to Equation 44), we

immediately obtain that under the optimal prices in demand state z = t must be given by:

px(t) =
η

η − 1

EG(x)[ΛM|z = t]

EG(x)[ΛP−1|z = t]
(131)

If we further assume that G(x) is a multivariate log-normal distribution with mean µx

and variance-covariance matrix Σx, then we obtain (by identical arguments to those in

Theorem 1) that the optimal supply function for a fixed choice of x ∈ X obeys the following

Proposition, the proof of which follows immediately from that of Theorem 1.

Proposition 6 (Supply Function Choice When Firms Choose More Than Prices and Quan-

tities). If for x ∈ X the distribution G(x) is multivariate normal, then the optimal supply

function is given by:

fx(p, q) = log p− α0,x − α1,x log q (132)

where α0,x and α1,x follow exactly the formulae derived in Theorem 1, where all appropriate

means and variances are computed under the distribution G(x).

From this, we observe that Theorem 1 carries as written in this extended setting. In

particular, supply functions remain log-linear and the same variances and covariances govern

their elasticity. The new feature here is that the choice of x can affect both the intercept and

the slope of the optimal supply function. In this way, the choice of x can have a non-trivial

effect on firms’ optimal pricing and production decisions.

With this, we can now explicitly characterize the value of any choice of x and thereby

solve for the optimal choice of x. Concretely, we have that:

V (x) =

∫
R4
++

Λ
z

P
px(z)

1−ηdGx(Λ, P,M,Ψ)−
∫
R4
++

ΛzMpx(z)
−ηdGx(Λ, P,M,Ψ) (133)

Substituting Equation 131, this becomes:

V (x) =

∫
R4
++

Λ
z

P
exp{(1− η)ω0,x}z(1−η)ω1,xdGx(Λ, P,M,Ψ)

−
∫
R4
++

ΛzM exp{−ηω0,x}z−ηω1,xdGx(Λ, P,M,Ψ)

(134)
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where ω0,x and ω1,x have the same formulae as those in the proof of Theorem 1 (with all

means, variances, and covariances indexed by x). Exploiting joint log-normality of Gx, we

can evaluate these integrals to obtain:

V (x) = exp

{
(1− η)ω0,x + µΛ,x − µP,x + (1 + ω1,x(1− η))µz,x +

1

2
σ2
R,x

}
− exp

{
−ηω0,x + µΛ,x + µM,x + (1− ηω1,x)µz,x +

1

2
σ2
C,x

} (135)

where:

σ2
R,x = Vx [log Λ− logP + (1 + ω1,x(1− η)) log z]

σ2
C,x = Vx [log Λ + logM+ (1− ηω1,x) log z]

(136)

With this, solving for the optimal choice of x ∈ X reduces to solving Equation 130 using

this V and given the exogenous function C.

We conclude by characterizing the optimal x in a simple example.

Example 1. Suppose that quality can be improved at some ex ante cost and that quality

affects how much consumers demand the product and nothing else. Formally, suppose that

C(x) = ζ
2
x2, µΨ,x = µΨ + log x, σx ≡ σ and µx is invariant to x except for µΨ,x. In the

previous formulae, observe that (ω1,x, σ
2
C,x.σ

2
R,x, µΛ,x, µP,x, µM,x) are invariant to x. Thus,

observing that ω0,x is affine in log x, we obtain that V is linear in x, i.e., V (x) = Kx for

some K > 0. It follows that the optimal choice is given by x∗ = K
ζ
.

This example shows that the approach followed in this appendix can be practically useful

in extending the supply function approach to consider firms that can choose additional

variables.

B.4 Supply Functions with Sticky Prices

In our main analysis, we allowed firms to change their prices every period to emphasize the

new economic features that supply functions generate. At the same time, our approach can

be augmented to include price stickiness. In this appendix, we show how to solve for the

optimal supply function when firms are subject to Calvo pricing.

Firms are as in our main analysis, except their prices are sticky each period with prob-

ability θ ∈ [0, 1]. For this appendix, we apply the standard second-order approximation to

firms’ profits and write the flow profit of the firm as:

−B(log p− log p∗∗)2 (137)
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where we recall that p∗∗ = η
η−1

MP and B > 0 is the curvature of the profit function. Under

this approximation, the firm’s lifetime loss from setting price pt at date t is given by:

L(pt) = B

∞∑
j=0

(βθ)j(log pt − log p∗∗t+j)
2 (138)

As in our main analysis, at date t, a price-resetting firm chooses a supply function ft and

they will produce at the price and quantity such that the ft(pt, qt) = 0 locus intersects the

demand curve log zt = log qt − η log pt. By applying similar arguments to those of Theorem

1, we obtain the following characterization of the optimal supply function:

Proposition 7 (Optimal Supply Function with Price Stickiness). For a firm with Calvo

stickiness parameter θ ∈ [0, 1] and discount factor β ∈ [0, 1), any optimal supply curve is

almost everywhere given by:

ft(pt, qt) = log pt − α0,t − α1,t log qt (139)

where the slope of the optimal price-quantity locus, α1,t ∈ R, is given by:

α1,t =
ω̂1,t

1− ηω̂1,t

(140)

where:

ω̂1,t = (1− βθ)
∞∑
j=0

(βθ)jω1,t,j (141)

and:

ω1,t,j =
σMt+j ,zt + σPt+j ,zt

σ2
zt

(142)

Proof. We first characterize the optimal zt-measurable price, p̂t(zt). Taking the first-order

condition of the firm’s expected loss, we have that:

log p̂t(zt) = (1− βθ)Et

[ ∞∑
j=0

(βθ)j log p∗∗t+j | zt

]
(143)

We moreover have that:

Et[log p
∗∗
t+j|zt] = Et

[
log

η

η − 1
+ logPt+j + logMt+j | zt

]
= ω0,t,j + ω1,t,jzt (144)

63



where:

ω1,t,j =
σMt+j ,zt + σPt+j ,zt

σ2
zt

ω0,t,j = log
η

η − 1
+ µMt+j

+ µPt+j
− ω1,t,jµzt

(145)

which are both deterministic functions of t and j. Substituting this into the formula for the

firm’s optimal zt-measureable price, we obtain that:

log p̂t(zt) = (1− βθ)
∞∑
j=0

(βθ)jω0,t,j +

[
(1− βθ)

∞∑
j=0

(βθ)jω1,t,j

]
zt

= ω̂0,t + ω̂1,tzt

(146)

Using the fact that the firm’s demand curve is log zt = log qt − η log pt, we obtain that

log pt = α0,t + α1,t log qt with α0,t =
ω̂0,t

1−η ˆω1,t
and α1,t =

ω̂1,t

1−ηω̂1,t
, completing the proof.

From this, we observe that price stickiness modifies the slope of the firm’s optimal supply

function, but it remains optimally log-linear (at least under the quadratic approximation to

the firm’s flow profit that is standard in dynamic Calvo pricing models). The firm’s optimal

supply elasticity now incorporates how much the firm learns from its demand today about

the whole sequence of its current and future nominal marginal costs. The inference that

it performs about its date t + j marginal costs from today’s demand is captured by ω1,t,j,

which is precisely the OLS regression coefficient that one obtains from regressing nominal

marginal costs at date t + j on demand at date t. In deciding its optimal price today, the

firm then must weigh its inference about future nominal marginal costs by how much it

cares about the future j periods from now (βj) and how likely its price today is to prevail

in j periods (θj). This weighting yields ω̂1,t, which captures the overall responsiveness of

the price today to demand today. Once this has been obtained, we can convert this into

the slope of the optimal supply curve as we did in our main analysis via the transformation

ω̂1,t 7→ ω̂1,t

1−ηω̂1,t
≡ α1,t.

This analysis highlights that the supply function approach is not a replacement for sticky

price models, but rather represents a different approach to modelling how firms that can

reset their prices do so. While we abstract from sticky prices in our main analysis to make

plain the new modelling implications of supply functions, the analysis of this appendix

demonstrates that it is practically simple to combine our supply function approach with

canonical approaches to modelling sticky prices.

64



C Allowing for Correlated Aggregate Shocks

In this extension, we allow for the shocks to the money supply and aggregate productivity

to be correlated. Specifically, we assume that, conditional on outcomes in period t− 1 that

(logAt, logMt) is jointly normally distributed. Our main analysis assumes that logAt and

logMt are uncorrelated. Allowing for correlation modifies firms’ conditional expectations of

the aggregate shocks to the following:

Ei,t[logAt] = const + κA
t s

A
it + κ̃A

t s
M
it

Ei,t[logMt] = const + κM
t sMit + κ̃M

t sAit
(147)

where const are terms independent of the realized shocks at date t, and (κA
t , κ̃

A
t , κ

M
t , κ̃M

t ) are

the Kalman gains.

In this extended setting, Theorem 1 on firms’ optimal supply functions holds as written.

Theorem 2 on the AS/AD representation holds with modified formulae for the slopes of

the aggregate demand and aggregate supply curves as the guess and verify argument must

be modified to account for the new formulae for firms’ expectations of aggregate shocks.

Performing this modification, we obtain the following:

Proposition 8. There exists a unique log-linear temporary equilibrium that is described by

an “Aggregate Demand/Aggregate Supply” model in which the slope of the aggregate supply

curve is given by:

ϵSt = γ
χM,t

1− χM,t

(148)

where:

χM,t =

κM
t + (1− κM

t ) 1
γ
ω1,t + κ̃A

t

(
−1−

(
η − 1

γ
ω1,t

−κA
t +(1− 1

γ
ω1,t)κ̃M

t

1−ω1,t(η− 1
γ )(1−κA

t )

))
1− ω1,t

(
η − 1

γ

)(
(1− κM

t )− ω1,t(η− 1
γ )κ̃M

t

1−ω1,t(η− 1
γ )(1−κA

t )
κ̃A
t

) (149)

Proof. As in the proof of Theorem 2, we will guess and verify that (dropping t subscripts

for compactness):

logP = χ0 + χA logA+ χM logM (150)
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The same arguments as Theorem 2 imply that we must compute:

pi =
η

η − 1

Ei

[
ϕ(ziA)

−1
(
ϑiI

− 1
γP− 1

γM
1
γP η

)1−ηω1
]

Ei

[
I1−

1
γ
(1+ω1−ηω1)M

1
γ
(1+ω1−ηω1)−1ϑ1+ω1−ηω1P (η− 1

γ )(1+ω1−ηω1)
]

×
(
ϑiI

− 1
γM

1
γP η− 1

γ

)ω1

(151)

Moreover, the same arguments as Theorem 2 imply that:

logP = E[log pi] +
1

2(1− η)
Var((1− η) log pi) + cons (152)

We now compute the numerator, denominator and multiplicative terms in the firm’s pricing

equation that obtain under their chosen supply function:

logEi

[
ϕ(ziA)

−1
(
ϑiI

− 1
γP− 1

γM
1
γP η

)1−ηω1
]
= cons

+

(
−1 +

(
η − 1

γ

)
(1− ηω1)χA

)
Ei[logA]

+

(
1

γ
(1− ηω1) +

(
η − 1

γ

)
(1− ηω1)χM

)
Ei[logM ]

(153)

logEi

[
I1−

1
γ
(1+ω1−ηω1)M

1
γ
(1+ω1−ηω1)−1ϑ1+ω1−ηω1P (η− 1

γ )(1+ω1−ηω1)
]
= cons

+

(
η − 1

γ

)
(1− ηω1 + ω1)χAEi[logA]

+

(
−1 +

1

γ
(1− ηω1 + ω1) +

(
η − 1

γ

)
(1− ηω1 + ω1)χM

)
Ei[logM ]

(154)

log
(
ϑiI

− 1
γM

1
γP η− 1

γ

)ω1

= cons

+ ω1

(
η − 1

γ

)
χA logA+ ω1

(
1

γ
+

(
η − 1

γ

)
χM

)
logM

(155)

From this, we have that:

log pi = cons

+

(
−1−

(
η − 1

γ

)
ω1χA

)
Ei[logA] + ω1

(
η − 1

γ

)
χA logA

+

(
1− 1

γ
ω1 −

(
η − 1

γ

)
ω1χM

)
Ei[logM ] + ω1

(
1

γ
+

(
η − 1

γ

)
χM

)
logM

(156)
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Aggregating this according to the aggregation formula, we obtain:

logP = cons

+

(
−1−

(
η − 1

γ

)
ω1χA

)
E[logA] + ω1

(
η − 1

γ

)
χA logA

+

(
1− 1

γ
ω1 −

(
η − 1

γ

)
ω1χM

)
E[logM ] + ω1

(
1

γ
+

(
η − 1

γ

)
χM

)
logM

(157)

Up to this point, everything is the same as Theorem 2. The presence of correlated aggregate

shocks now changes the formulae for (E[logA],E[logM ]). These are now given by:

E[logA] = cons + κA logA+ κ̃A logM

E[logA] = cons + κM logM + κ̃M logA
(158)

Plugging these into the formula for the aggregate price level and collecting terms:

logP = cons

+

(
ω1

(
η − 1

γ

)
χA +

(
−1−

(
η − 1

γ

)
ω1χA

)
κA +

(
1− 1

γ
ω1 −

(
η − 1

γ

)
ω1χM

)
κ̃M

)
logA

+

(
ω1

(
1

γ
+

(
η − 1

γ

)
χM

)
+

(
1− 1

γ
ω1 −

(
η − 1

γ

)
ω1χM

)
κM +

(
−1−

(
η − 1

γ

)
ω1χA

)
κ̃A

)
logM

(159)

Thus, by matching coefficients and simplifying, we have that:

χA = −κA + (1− κA)

(
η − 1

γ

)
ω1χA +

(
1− 1

γ
ω1 −

(
η − 1

γ

)
ω1χM

)
κ̃M

χM = κM + (1− κM)
1

γ
ω1 + (1− κM)

(
η − 1

γ

)
ω1χM +

(
−1−

(
η − 1

γ

)
ω1χA

)
κ̃A

(160)

We can now solve this linear system of equations in (χA, χM). To do this, we first solve for

χA as a function of χM :

χA =
−κA +

(
1− 1

γ
ω1 −

(
η − 1

γ

)
ω1χM

)
κ̃M

1− ω1

(
η − 1

γ

)
(1− κA)

≡ a− bχM (161)
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where:

a =
−κA +

(
1− 1

γ
ω1

)
κ̃M

1− ω1

(
η − 1

γ

)
(1− κA)

b =
ω1

(
η − 1

γ

)
κ̃M

1− ω1

(
η − 1

γ

)
(1− κA)

(162)

Substituting this into the equation for χM , we obtain that:

χM =
κM + (1− κM) 1

γ
ω1 + κ̃A

(
−1−

(
η − 1

γ
ω1a
))

1− ω1

(
η − 1

γ

)
((1− κM)− bκ̃A)

(163)

Completing the solution. Using Proposition 1, which establishes that ϵSt = γ
χM,t

1−χM,t
, we

obtain the result.
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D Additional Quantitative and Empirical Analysis

This Appendix provides additional details for the analysis in Section 5.

D.1 Methods and Estimation

Data. We use quarterly-frequency data from the United States from 1960Q1 to 2024Q4.

We measure real GDP and the price level using data from the US BEA. From these variables,

we construct GDP growth ∆ log Yt and inflation ∆ logPt in log differences. We measure TFP

growth using the dataset of Fernald (2025), based on the work of Fernald (2014). Specifically,

we take raw data on the annualized growth rate in capacity-utilization adjusted TFP and

divide by 400 to obtain a comparable quarter-to-quarter growth rate ∆ logAt. Finally, as

described in the main text, we construct a variable corresponding to aggregate marginal cost

growth as

∆ logMt = γ ·∆ log Yt −∆ logAt (164)

where we calibrate γ = 0.11 based on the findings of Gagliardone et al. (2023), who use micro-

data from Belgian manufacturers to calculate the implied pass-through from the output gap

to real marginal costs. This calibration is also consistent with evidence of substantial wage

rigidity over the business cycle in the United States (Grigsby et al., 2021), and comparable

to what one would estimate by directly looking at the relationship between detrended real

wages and output in the US.21

Time-Varying Volatility from a GARCH Model. We estimate time-varying uncer-

tainties regarding inflation, real output, and real marginal costs using a multivariate GARCH

model. In particular, letting Xt denote the vector (∆ logPt,∆ log Yt,∆ logMt), we model

Xt = A+BXt−1 + εt, εt ∼ N(0,Σt), Σt = D
1
2
t CD

1
2
t (165)

where A is a 3×1 vector of constants, B is a 3×3 matrix of AR(1) coefficients, Dt is a diagonal

matrix of time-varying variances (and D
1
2
t is a diagonal matrix of standard deviations), and

C is a static matrix of correlations. We assume that each diagonal element of Dt, denoted

as σ2
i,t, evolves according to:

σ2
i,t = si + αiε

2
i,t−1 + βiσ

2
i,t−1 (166)

with unknown constant si and coefficients (αi, βi). Formally, this is a GARCH (1,1) model

with constant conditional correlations (Bollerslev, 1990). We estimate all of the parameters

21For example, using this latter method, Flynn and Sastry (2022) calibrate γ = 0.095.

69



Table A1: Testing the GARCH Model Against Alternatives

(1) (2) (3)
Model VAR GARCH (CCC) GARCH (VCC)
Likelihood ratio — 194.82 0.10
Degrees of freedom — 6 1
p-value (χ2(df)) — 0.000 0.746

Notes: This table presents specification tests of the GARCH model used for analysis. The data are quarterly-
frequency GDP growth, GDP deflator inflation, and real marginal cost growth in the US from 1960Q1 to
2024Q4. The models are, respectively, a vector auto-regression in first differences (column 1); the same
model plus a residual GARCH (1,1) with constant conditional correlations (column 2; see also Equations
165 and 166); and the same model plus varying conditional correlations (column 3). The second row gives the
likelihood ratio for the model in question versus the nested model in the previous column. The third row gives
the degrees of freedom of the likelihood ratio test, equal to the number of additional free parameters. The
fourth row gives the p-value from evaluating the test statistic at the χ2 distribution with the corresponding
degrees of freedom.

via joint maximum likelihood.

In calibrating the model, we use volatilities dated at time t to stand in for economic

agents’ uncertainty about making decisions at time t. As is apparent from Equation 166,

these volatilities are measurable in macroeconomic history up to period t − 1. Thus, this

timing convention is consistent with our notion in the model that economic agents observe all

macroeconomic history up to time t− 1 and their priors are informed by these observations.

All in all, for each quarter t, we set

σ̂2
Ψ,t = Σ̂Y,Y,t +R2Σ̂A,A,t σ̂Ψ,P,t = Σ̂Y,P,t

σ̂M,Ψ,t = Σ̂M,M,t σ̂M,P,t = Σ̂M,P,t

(167)

where the Σ̂·,·,t are the elements of the residual covariance matrix and R = 6.5 from the

quantitative estimates of Bloom et al. (2018).

Our estimation procedure allows us to naturally test the specified model against nested

alternatives (A1). In column 2, we compare our GARCH model with the nested model with

constant volatility: a vector auto-regression (VAR) in first differences for the variable Xt.

This model has six fewer parameters, corresponding to the ARCH and GARCH parameter

in each residual’s equation. The likelihood ratio of 194.82 comfortably rejects the nested

VAR model. In column 3, we compare the constant conditional correlations GARCH model

(our baseline) with an expanded model that allows for varying conditional correlations (Tse

and Tsui, 2002). In particular, in this model, the covariance matrix of residuals is now
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Figure A1: Estimates of Time-Varying Uncertainty
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Notes: Both panels plot our quarterly time-series estimates of uncertainty, estimated as described in this
appendix. All lines are computed from one-quarter-ahead volatility predictions from a constant conditional
correlations (CCC) GARCH model. The left plot shows all series on a common scale, and the right plot
zooms in on the series other than demand. Both plots feature spikes that are off the scale of the graph
during the Covid-19 lockdown.

Σt = D
1
2
t CtD

1
2
t (cf. Equation 165) where

Ct = (1− λ1 − λ2)C + λ1Ψt + λ2Ct−1 (168)

where λ1, λ2 ≥ 0 are parameters governing the dynamics of the correlations, which satisfy

the restriction 0 ≤ λ1 + λ2 < 1; C is a long-run mean of the correlations; and Ψt is a

4-period (number of variables plus one) rolling estimator of the standardized residuals ε̃t =

D
− 1

2
t εt. Due to the additional restriction on λ1 and λ2, this model has only one more free

parameter than the nested constant conditional correlations model. The likelihood ratio

of 0.10 demonstrates an only marginal improvement in fit, failing to reject at conventional

significant levels. Thus, the data suggest that a model with time-varying volatility, but

constant conditional correlations, is a good fit for recent US history.

Estimates of Time-Varying Uncertainty. In Figure A1, we plot the raw time series for

each of our uncertainty measures. We observe that our estimates of demand uncertainty are

an order of magnitude larger than our estimates of other uncertainties. This is natural given

our large assumed value of R, the (square root of the) ratio between idiosyncratic demand

uncertainty and aggregate real marginal cost uncertainty. But this does not necessarily imply
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Figure A2: Estimates of Time-Varying Uncertainty
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Notes: This figure shows the bivariate relationships between the estimated slope of aggregate supply (see
Section 5.1 and Appendix D.1), the level of inflation (quarterly log difference in GDP deflator), and uncer-
tainty about inflation (estimated one-quarter-ahead from a constant conditional correlations GARCH model;
see Section 5.1 and Appendix D.1). Each observation corresponds to one quarter. The numbers in the top
left indicate the correlations for each pair of variables.

that demand uncertainty is the only influential force shaping the slope of microeconomic

or macroeconomic supply, since uncertainties enter our formulas in interaction with the

elasticity of demand η. This is apparent from our results—the fluctuations in the slope of

aggregate supply in Figure 4 clearly reflect significant fluctuations in the other components

of uncertainty that are plotted in the second panel of Figure A1.

Inflation Levels, Inflation Uncertainty, and the Estimated Slope. Figure A2 shows

the correlations between our estimated slope, the level of inflation, and uncertainty regarding

inflation. Broadly speaking, we estimate the slope of aggregate supply to be high when the

level and uncertainty regarding inflation are high (panels A and B). Moreover, the level of

inflation and inflation uncertainty are highly correlated with one another (panel C). This

finding echoes the observation of Ball et al. (1988) that it is difficult, empirically, to find

circumstances in which levels and volatilities of inflation are decoupled from one another,

posing a difficulty for testing different models of state-dependent aggregate supply against

one another. However, as observed in Section 5.3, our model based on relative uncertainty

gives quite different predictions than simple models based on the level of or one-dimensional

uncertainty regarding inflation when confronted with global data.
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Figure A3: Rising Market Power and Flattening Aggregate Supply
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Notes: This figure plots the inverse elasticity of aggregate supply under different scenarios of declining
market power and shows how trends in market power affect the slope of aggregate supply. We calibrate
the model under two scenarios: a fixed value of ηt ≡ 8 (grey line, “Constant Market Power”) and a linear
trend over the sample from an initial value of η1960Q1 = 11 to a final value of η2024Q4 = 5 (blue dashed line,
“Rising Market Power”). All other parameters, including the measured uncertainties, are exactly as in our
baseline calculations (see Section 5.1 and Appendix D.1). Panel A shows the time series behavior of average
markups, ηt

ηt−1 , implied by our different assumptions about the elasticity of demand. Panel B shows the
resulting calculations for the slope of aggregate supply, averaged over years.

D.2 Market Power and Aggregate Supply

A recent literature has suggested that market power, as measured by rising markups, has

risen throughout time (De Loecker et al., 2020; Demirer, 2020; Edmond et al., 2023). Com-

bined with our theoretical finding that increased market power flattens aggregate supply

under plausible parameter values, this suggests another potentially relevant culprit for the

long-run flattening of supply.

To study this possibility, we consider alternative calibrations of the slope of aggregate

supply in which we allow a secular downward trend in the elasticity of demand. Specifically,

we consider a scenario in which η linearly declines from 11 to 5 between 1960 and 2024. This

implies an increase in average markups from 11/10 = 1.10 to 5/4 = 1.25. These exercises

are not counterfactuals, which would require fully estimating the model and accounting for

the effects of market power on macroeconomic uncertainty. Instead, they are alternative

calibrations that would be more appropriate than our baseline if the elasticity of demand

has truly fallen over time.

Introducing a decline in market power increases the slope of aggregate supply in the 1970s

and decreases the slope in modern times (Figure A3). Calibrating to this different scenario

implies that the slope of aggregate supply flattens by 41% from 1978-1990 to 1991-2018,

compared to an estimate of 28% in our baseline model and an empirical estimate of 51%
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from Hazell et al. (2022). Thus, allowing for an increase in market power allows the model to

more closely match empirical estimates for the flattening of aggregate supply from the 1970s

to the 2010s. These calculations provide suggestive evidence that market power interacts

in a quantitatively relevant way with the slope of aggregate supply in our model. We leave

further analysis of this interaction to future work.

D.3 International Evidence

Data. We take annual data from 1960-2019 from the most recent edition of the Penn

World Tables (Feenstra et al., 2015; Zeileis, 2023). In particular, we measure real GDP, GDP

deflator (expressed in local currency), total hours, and the real value of the capital stock.

We construct real GDP growth and inflation as log differences (annual) in the corresponding

variables. We calculate TFP at the level of countries c and years t based on a constant labor

share of 2/3 as

logAct = logRealGDPt −
1

3
log RealCapitalStockct −

2

3
log LaborHoursct (169)

Finally, we construct growth in real marginal costs as described in Equation 164, using the

same calibration for γ. To calculate the slope of aggregate supply in each country, we also

carry over our calibration of η = 8, R = 6.5, and κM = 0.29.

Volatility from a VAR Model. Because our interest is cross-sectional differences, we

estimate a VAR model with time-invariant volatility for each country, rather than a model

of time-varying volatility (e.g., a GARCH model). In particular, letting Xt again denote the

vector (∆ logPt,∆ log Yt,∆ logMt), we model

Xct = Ac +BcXc,t−1 + εct, εct ∼ N(0,Σc), (170)

where (Ac, Bc) are country-specific coefficients and Σc is a country-specific covariance matrix.

We map the covariances from the VAR to the model using the same method described in

Equation 167, but with an estimate for Σ that depends on countries rather than time periods.

Finally, we drop three outliers from our calculations, Greece, Iceland, and Sweden, for

which we calculate a slope of aggregate supply and/or inflation-output relationship more

than 3 standard deviations away from the median.

Empirical Proxies for the Slope of Aggregate Supply. We calculate two country-

level proxies for the slope of aggregate supply. The first is the country-level, reduced-form

relationship between inflation and real output growth. That is, the coefficient βS
c from the
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regression

∆ logPct = αc + βS
c ·∆ log Yct + εct (171)

estimated by ordinary least squares for each country c, using variation across time periods.

The coefficient

βS
c =

Cov[∆ logPct,∆ log Yct]

Var[∆ log Yct]
(172)

measures the strength of the reduced-form relationship between real output growth and

inflation. This is in the spirit of the reduced-form tests of Lucas (1973) and Ball et al. (1988),

who similarly look at covariances of real and nominal components of GDP. To understand

the structural interpretation of βS
c , we observe from Theorem 2 that, in the equilibrium of

the model,

∆ logPt = ϵS∆ log Yt +
(
δt∆ logAt +∆ log P̄t

)︸ ︷︷ ︸
=ε̃ct

(173)

where the term in parenthesis can be interpreted as the structural residual of Equation 171.

Intuitively, the structural residual of the reduced-form relationship between aggregate prices

and aggregate quantities can be thought of as the “shock to aggregate supply,” and the

reduced-form relationship traces out the “aggregate supply curve” if and only if all variation

in real GDP growth is induced by “aggregate demand” shocks (i.e., money supply shocks).

If this does not hold (i.e., if some variation in real GDP growth, in deviation from the mean,

is driven by productivity), then we expect Cov[∆ log Yct, ε̃ct] < 0 and a downward bias in the

ordinary least squares estimate, or plim β̂S,OLS
c < ϵS

As a second strategy, we construct a model-based instrument for money supply growth.

Using the money demand equation (the second equation in Proposition 1), we observe that,

in equilibrium,

Mt = Y γ
t Pt

1 + it
it

(174)

Abstracting from nominal interest rate changes, which is what our model implies under the

imposed simplification of time-invariant volatility (and time-invariant ϵS), the model implies

∆ logMt = γ∆ log Yt +∆ logPt (175)

and moreover, due to the random-walk behavior of the money supply, that these increments

are idiosyncratic across time and uncorrelated with shocks to productivity. Therefore, we

construct the money growth instrument ∆ log M̃ct = γ∆ log Yct + ∆ logPct and use it as an

instrument for real GDP growth. The first-stage equation is

∆ log Yct = ζc + βF
c ·∆ log M̃ct + νct (176)
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Table A2: Predicting the Slope of Aggregate Supply

(1) (2) (3) (4) (5) (6)

Outcome is β̂S
c (Reduced-form) Outcome is β̂S,IV

c (Structural)

ϵ̂Sc , Slope of ag. supply 0.261 0.132 0.0174 7.226 7.618 8.823
(0.0379) (0.0392) (0.0565) (2.410) (3.406) (4.996)

Mean inflation -7.542 22.86
(1.583) (137.7)

Inflation uncertainty -84.96 556.1
(17.14) (1516.1)

Observations 29 29 29 29 29 29
R2 0.638 0.807 0.814 0.250 0.251 0.254

Notes: This table reports the cross-country relationship between empirical and theoretical proxies for the
slope of aggregate supply. All estimates are from linear regressions where the unit of observation is an
OECD country. In columns 1-3, the outcome is the “reduced-form” slope of aggregate supply defined in
Equation 172. In columns 4-6, the outcome is the “structural” slope of aggregate supply defined in Equation
177. The independent variables are the model-implied slope of aggregate supply, calculated based on a
macroeconomic calibration and measurements of relative uncertainty in each country; the mean value of
GDP deflator inflation from 1960-2019; and the one-step-ahead forecast variance of inflation from a three-
variable VAR model (see Equation 170) over the same period. Standard errors are in parentheses.

and the structural equation remains Equation 171. The population two-stage least squares

coefficient of the slope of supply is

βS,IV
c =

Cov[∆ logPct,∆ log M̃ct]

Cov[∆ log Yct,∆ log M̃ct]
=

γCov[∆ logPct,∆ log Yct] + Var[∆ logPct]

Cov[∆ logPct,∆ log Yct] + γVar[∆ log Yct]
(177)

Cross-Country Evidence. Table A2 summarizes the relationship between our empirical

proxies and model-based calculations for the slope of aggregate supply. Column 1 shows the

positive relationship between the reduced-form slope and model-based slope that is visualized

in the left panel of Figure 5. This relationship is robust to controlling for the level of

inflation (column 2). The relationship becomes statistically insignificant when controlling

for one-step-ahead inflation uncertainty (column 3), although the coefficient on the latter is

inconsistent with the theoretical prediction. Turning to the structural estimates (columns

4-6), we estimate a large and quantitatively stable relationship between the data-based and

model-based estimates. The larger magnitudes in columns 4-6 versus 1-3 are consistent

with the hypothesis that the reduced-form coefficients are biased toward zero by spurious

correlation with aggregate supply shocks. The coefficients on mean inflation and inflation

uncertainty in columns 5 and 6 are consistent with theory, but imprecisely estimated and of
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marginal consequence to the R2 of the model.

While these results are to be interpreted with caution, given the limited sample size and

abundance of confounding factors in cross-country analysis, they offer suggestive evidence

that the model-based slope of aggregate supply helps predict cross-country variation in the

inflation-output relationship. Moreover, our model’s prediction based on relative variance

has predictive power over and above the mean and one-step-ahead uncertainty regarding

inflation, which are the main factors influencing the slope of aggregate supply in other

theories of state-dependent firm adjustment (Ball et al., 1988). Further investigation of

the differences between these models may be possible by incorporating both time-series and

cross-sectional variation in an international panel or by turning to micro data. We leave

these investigations to future work.

D.4 Counterfactual Analyses and Equilibrium Multiplicity

The analysis in the main text leveraged the “reduced form” uncertainties relevant to the firm

in Theorem 1 and did not estimate the structural uncertainties that mediate firms’ supply

functions slopes via the fixed point in Theorem 3. As noted in the main text, an advantage of

this approach is that the economic analyst can measure the slope of firms’ supply functions

without taking a stance on the general equilibrium features of the economy. Moreover, by

using such observational data, the analyst can bypass issues of equilibrium selection.

However, a limitation of this approach is that this method precludes conducting counter-

factuals which would be relevant when model parameters endogenously respond to policy. In

this section, we outline how one can use our theory to conduct counterfactual exercises and

demonstrate that a unique equilibrium exists for a reasonable calibration of the US economy.

Methodology and Calibration. Solving the fixed point in Theorem 3 requires values

for the preference parameters (η, γ) and uncertainties (σϑ,t, σ
A
t , σ

M
t , κA

t , κ
M
t ). To simplify the

analysis, we assume that these parameters are time-invariant. We set η = 8 and γ = 0.11

as in the main text. Moreover, we set σ2
ϑ,t = 0.0026 to match the unconditional mean of

our GARCH estimates in Section 5 over our sample period. Next, we back out the latent

aggregate demand shock using the observation that Mt =
1+it
it

Cγ
t Pt from Proposition 1. We

calibrate σM
t to match the mean unconditional variance in ∆ logMt following Equation 16.

We also calibrate σA
t to match the mean unconditional variance in ∆ logAt, where we measure

TFP growth At using the dataset of Fernald (2025). Finally, we set κM
t and κA

t to zero. We

do so to keep our analysis consistent with the methodology of Golosov and Lucas (2007),

which directly estimates firms’ uncertainty using realized inflation rates. Nevertheless, the

basic message of equilibrium uniqueness is not sensitive to these parameter choices.
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Figure A4: Fixed Point of Firms’ Supply Function Slopes

(a) US Parameters: Unique Equilibrium
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Notes: The left panel plots the fixed point from Theorem 3 under a parameterization with a
unique equilibrium when parameters are calibrated to the US economy: (κA, κM , σ2

M , σ2
A, η, γ, σ

2
ϑ) =

(0, 0, 0.00017, 0.000068, 8, 0.11, 0.0026). The right panel plots a parameterization with three equilibria:
(κA, κM , σ2

M , σ2
A, η, γ, σ

2
ϑ) = (0.1, 0.9, 5, 10, 2, 0.02, 5).

Results. Figure A4 plots the fixed point in Theorem 3 for various parameter values. The

left panel depicts the fixed point for a parameterization of the US economy, described above.

The right panel depicts the fixed for an alternative parameterization which features multiple

equilibria.

Observe that the US parameterization features a unique equilibrium. The intuition for

this result is that idiosyncratic demand uncertainty is large in our estimation relative to

other sources of uncertainty. For this reason, the fixed point for firms’ microeconomic supply

elasticities is well approximated by a linear function. To obtain equilibrium multiplicity, we

have had to increase firms’ relative uncertainty about aggregate vs. idiosyncratic demand

conditions by more than ten-fold, as well as fix a particularly low value of γ. To provide

some intuition for multiplicity in this environment, observe that the dynamics of real GDP

are described by the following Equation (see Lemma 1):

logCt = χ̃0,t+
1

γ

κA
t

1− ω1,t

(
η − 1

γ

)
(1− κA

t )
logAt+

1

γ

(1− κM
t )(1− ηω1,t)

1− ω1,t

(
η − 1

γ

)
(1− κM

t )
logMt (178)

In particular, higher values of ω1,t reduce the volatility of aggregate consumption that arises

through productivity shocks. But this in itself is a force that favors steeper supply functions,

since even small shifts in demand are likely to imply large changes in marginal costs. Con-

sequently, this economy can feature multiple equilibria in firms’ supply function elasticities,
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through a general equilibrium feedback loop that arises between supply function choice and

firms’ endogenous uncertainties, as we described in Section 4.4. Nevertheless, we have found

it challenging to construct examples with multiple equilibria and quantitatively reasonable

parameter values for the US. Consequently, we believe that our framework is also amenable

to counterfactual analyses for the US economy.
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